从零开始学MATLAB强化学习工具箱使用(一):在MDP环境中训练强化学习代理

翻译自强化学习工具包文档,加入自己的见解,训练结果是自己跑的。
部分对象在高版本的MATLAB中才有,需使用R2022a及以后的版本。

用Q-learning解决一般马尔科夫决策过程(MDP)环境。
在这里插入图片描述
图中:

  1. 每个圈代表一个状态;
  2. 在每一个状态均有向上和向下两个选择;
  3. 代理(Agent)初始状态为状态1;
  4. 图中箭头上的值代表智能体状态转换可获得的奖励;
  5. 训练目标是使累计获得的奖励最大。

创建MDP环境

创建一个MDP模型,其包含8个状态和两个动作。

MDP = createMDP(8,["up";"down"]);  
%两个参数,传入正整数或字符串向量均可,传入正整数的话,例如此处第一个参数(states)传入8,状态名默认为“s1,s2...”,第二个参数(actions)若也传入正整数,则动作名默认为“a1,a2”。

根据上图转换关系修改MDP模型的状态转换矩阵和奖励矩阵,矩阵元素默认为0。

% 代表从状态1采取动作1(“up”)转移到转态2的概率为1。
MDP.T(1,2,1) = 1;
% 代表从状态1采取动作1(“up”)转移到转态2的奖励为3。
MDP.R(1,2,1) = 3;
MDP.T(1,3,2) = 1;
MDP.R(1,3,2) = 1;
% State 2 transition and reward
MDP.T(2,4,1) = 1;
MDP.R(2,4,1) = 2;
MDP.T(2,5,2) = 1;
MDP.R(2,5,2) = 1;
% State 3 transition and reward
MDP.T(3,5,1) = 1;
MDP.R(3,5,1) = 2;
MDP.T(3,6,2) = 1;
MDP.R(3,6,2) = 4;
% State 4 transition and reward
MDP.T(4,7,1) = 1;
MDP.R(4,7,1) = 3;
MDP.T(4,8,2) = 1;
MDP.R(4,8,2) = 2;
% State 5 transition and reward
MDP.T(5,7,1) = 1;
MDP.R(5,7,1) = 1;
MDP.T(5,8,2) = 1;
MDP.R(5,8,2) = 9;
% State 6 transition and reward
MDP.T(6,7,1) = 1;
MDP.R(6,7,1) = 5;
MDP.T(6,8,2) = 1;
MDP.R(6,8,2) = 1;
% State 7 transition and reward
MDP.T(7,7,1) = 1;
MDP.R(7,7,1) = 0;
MDP.T(7,7,2) = 1;
MDP.R(7,7,2) = 0;
% State 8 transition and reward
MDP.T(8,8,1) = 1;
MDP.R(8,8,1) = 0;
MDP.T(8,8,2) = 1;
MDP.R(8,8,2) = 0;

指定状态“s7”和状态“s8”为结束状态:

MDP.TerminalStates = ["s7";"s8"];

为这个MDP模型创建强化学习MDP环境:

env = rlMDPEnv(MDP);

指定该环境的复位函数,调用复位函数会重置环境状态,这里代理的初始状态为状态1:

env.ResetFcn = @() 1;

固定随机数生成器种子以便复现结果:

rng(0)

创建一个Q-Learning代理

首先根据MDP环境的观测空间和动作空间创建Q表:

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
qTable = rlTable(obsInfo, actInfo);

使用Q表创建Q-Learning代理,配置ε-贪心探索。

% 使用rlQAgentOptions去指定创建Q-learning代理的各项值,各项值均有默认值,可修改。
agentOpts = rlQAgentOptions;
% 未来奖励的折扣因子
agentOpts.DiscountFactor = 1;
% 以0.9的概率随机选择动作,0.1的概率选择Q值最大的动作
agentOpts.EpsilonGreedyExploration.Epsilon = 0.9;
% Epsilon值的衰减因子,Epsilon = Epsilon*(1-EpsilonDecay)
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 0.01;
% 指定学习率
agentOpts.CriticOptimizerOptions = rlOptimizerOptions(LearnRate=1);
% 根据Q表创建Q值函数
qFunction = rlQValueFunction(qTable, obsInfo, actInfo);
% 创建Q-Learning代理
qAgent = rlQAgent(qFunction,agentOpts);

训练Q-Learning代理

指定训练参数:

trainOpts = rlTrainingOptions;
% 每轮最大步数
trainOpts.MaxStepsPerEpisode = 50;
% 最大训练轮数
trainOpts.MaxEpisodes = 500;
% 在30个连续回合内平均累计奖励大于13时停止训练
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 13;
trainOpts.ScoreAveragingWindowLength = 30;

使用train函数训练,通过标志doTraining控制训练或读取训练好的模型。

doTraining = false;

if doTraining
    % Train the agent.
    trainingStats = train(qAgent,env,trainOpts); %#ok<UNRCH> 
else
    % Load pretrained agent for the example.
    load("genericMDPQAgent.mat","qAgent"); 
end

回合奖励曲线、平均奖励曲线、Q值曲线:
在这里插入图片描述

验证Q-Learning的结果

使用sim函数在训练环境里仿真,智能体可以成功找到最优路径,获得最大累计奖励。

Data = sim(qAgent,env);
cumulativeReward = sum(Data.Reward)

在这里插入图片描述
查看训练好的Q表:

QTable = getLearnableParameters(getCritic(qAgent));
QTable{1}

在这里插入图片描述

### 回答1: 倒立摆是一个经典的控制问题,可以利用强化学习算法进行控制。其,Q习算法是一种基于值函数的强化学习算法,可以用来寻找最优策略。 在Matlab,可以通过以下步骤利用Q习算法进行倒立摆的强化学习控制: 1. 环境建模:首先,需要将倒立摆问题建模成一个马尔可夫决策过程(MDP),定义状态空间、动作空间、奖励函数等。 2. 初始化Q值:为了使用Q习算法,需要初始化一个Q值表,该表记录了每个状态和动作对应的Q值。 3. 设置超参数:Q习算法有一些超参数需要设置,例如习率、折扣因子等,根据具体问题进行选择。 4. 训练过程:通过与环境的交互,使用Q习算法更新Q值表。具体过程为: - 在每个时间步,根据当前状态选择一个动作,可以通过采用ε-greedy策略,在一定概率下选择最大Q值对应的动作,若不选最大Q值动作,则随机选择一个动作。 - 执行选择的动作,观察下一个状态和获得的奖励。 - 根据Q习的更新规则,更新Q值表对应的状态和动作的Q值。 - 循环执行上述步骤,直到达到预定的训练轮数或达到收敛条件。 在训练完成后,得到了经过训练的Q值表,可以利用该表进行倒立摆的控制。具体过程为: - 在每个时间步,根据当前状态选择该状态下具有最大Q值的动作。 - 执行选择的动作,控制倒立摆的运动。 通过以上步骤,利用Matlab和Q习算法可以实现倒立摆的强化学习控制。 ### 回答2: 倒立摆是一种非线性、不稳定的系统,对于这种系统,经典的控制方法很难取得满意的结果。而强化学习则是通过试错的方式,让机器从环境习并制定最优策略。 Q习是强化学习的一种算法,在matlab可以利用Q习算法来实现对倒立摆的控制。Q习的核心思想是通过在状态-动作空间建立Q值函数,根据当前状态选择最优的动作,并通过更新Q值函数不断优化策略。 具体实现过程如下: 1. 初始化Q值函数,可以随机初始化或者根据经验设定初值。 2. 设置习参数,如习率、折扣因子等。 3. 初始化倒立摆的状态和动作,并进入循环。 4. 在每个时间步,根据当前状态选择最优的动作。 5. 执行选择的动作,观察环境反馈的下一个状态和奖励。 6. 根据Q值函数进行更新,计算新的Q值并更新函数。 7. 根据更新后的Q值函数,调整下一次选择的动作。 8. 循环执行步骤4-7,直到达到预设的结束条件。 利用Q习算法控制倒立摆可以在训练的过程逐渐习到最优的策略。通过不断地尝试和调整,Q值函数会不断优化,最终得到一个能够实现倒立摆控制的最优策略。 在matlab,可以利用强化学习工具箱来实现Q习算法的倒立摆控制。首先,需要建立倒立摆的状态空间和动作空间,并定义相关的奖励函数。然后,利用强化学习工具箱提供的函数和接口,可以方便地实现Q习算法的训练和控制过程。 总之,利用matlab的Q习算法实现倒立摆的强化学习控制可以使其逐渐习到最优的控制策略,提高倒立摆的控制效果。这种方法可以应用于许多其他非线性、不稳定系统的控制,具有很大的应用潜力。 ### 回答3: Q习算法是一种强化学习算法,通过习动作-状态的价值函数来进行决策。倒立摆是一个经典的控制问题,使用Matlab可以很好地实现倒立摆的强化学习控制。 首先,需要定义倒立摆的状态和动作。倒立摆的状态可以包括摆角和摆速,动作可以是施加的力或者扭矩。然后,可以使用Matlab强化学习工具箱的Q习函数来建立Q习模型。 在Q习算法,需要定义Q表来存储动作-状态的价值函数。开始时,可以初始化Q表为0或者随机值。然后,使用贪婪策略选择动作,即选择具有最大Q值的动作。当进行一次动作后,根据获得的奖励和下一个状态,更新Q表的Q值。 实际上,倒立摆问题是一个连续动作和状态空间的问题,Q习算法对于这种问题不太适用。可以采用基于Q习的神经网络算法,如深度Q网络(DQN)来解决连续控制问题。 使用Matlab实现DQN,首先需要定义一个深度神经网络,网络的输入是状态,输出是每个动作的Q值。然后,定义损失函数,通过梯度下降方法来优化网络参数。在训练过程,可以使用经验回放机制来提高样本的利用效率。 最后,在训练完成后,可以使用已经训练好的神经网络来进行倒立摆的控制。根据当前状态和网络输出的Q值,选择最大Q值对应的动作来控制倒立摆。 综上所述,Matlab可以利用Q习算法或者基于Q习的神经网络算法来实现倒立摆的强化学习控制。Q习算法适用于离散的动作和状态空间,而对于连续控制问题,可以使用基于Q习的神经网络算法来进行训练和控制。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值