游戏内数据埋点事件 3类7个事件作为特殊事件

Mob统计游戏专版为游戏行业做了垂直化定制,提供如下3类共7个事件作为特殊事件,强烈建议您调用SDK提供的方法直接埋点,这样将为您自动生成LTV、ARPU、ARRPU等游戏版专属数据分析模型

1、付费类型事件– ALSDKPayEvent

ALSDKPayEvent 适用于付费事件的埋点专用

[AnalySDK trackPayEvent:payEvent];

在您的游戏执行付费事件时,我们强烈建议您使用ALSDKPayEvent,并调用对应的付费接口进行埋点。这能很好帮助我们进行精准的统计,并是您在统计后台能够使用更丰富的功能。

例如LTV、ARPU、ARRPU等游戏专属数据分析模型均会用到此事件及属性

ALSDKPayEvent中的更多字段属性请尽量补充,丰富的字段也更利于您的统计分析。

其头文件也有注释可参考

 

2、用户类型事件-LSDKUser

ALSDKUser适用于注册/登录/用户更新信息接口。

[AnalySDK userRegist:user];

[AnalySDK userLogin:user];

[AnalySDK userUpdate:user];

在您的游戏执行上述三个行为操作时,我们强烈建议您使用ALSDKUser,并调用对应的注册/登录/用户更新信息接口进行埋点。这样我们将自动为您更新用户属性,并在之后的每次事件埋点时产生用户属性快照,方便您记录用户行为场景

ALSDKUser中的更多字段属性请尽量补充,丰富的字段也更利于您的统计分析。

其头文件也有注释可参考

 

3、游戏角色类型事件– ALSDKRole

ALSDKRole 适用与游戏专用的角色创建/角色登录/角色更新

[AnalySDK roleCreate:role];

[AnalySDK roleLogin:role];

[AnalySDK roleUpdate:role];

在您的游戏执行上述三个环境操作时,我们强烈建议您使用ALSDKRole,并调用对应的角色创建/登录/更新信息接口进行埋点。这样我们将自动为您更新角色属性,并在之后的每次事件埋点时产生角色属性快照,方便您记录用户角色行为场景

当然若您的游戏并不涉及角色或者一个用户账号对应多个服务器的情况下可不使用该角色模型

ALSDKRole中的更多字段属性请尽量补充,丰富的字段也更利于您的统计分析。

其头文件也有注释可参考

 

 

### 如何在神策中创建埋点事件 #### 方法概述 在神策数据分析平台中,创建埋点事件通常涉及以下几个方面:准备阶段、埋点方案设计以及具体实现方式的选择。以下是关于如何创建埋点事件的具体说明。 --- #### 1. **准备工作** 在正式创建埋点事件之前,需要完成一系列基础设置工作。这包括但不限于项目的初始化和环境搭建。例如,在微信小程序环境中,需先按照官方文档指导完成神策数据SDK的安装与配置[^4]。此外,还需确认当前所使用的校验模式是否支持元事件的创建操作[^2]。 --- #### 2. **全埋点 vs 自定义埋点** 根据实际需求选择合适的埋点策略: - **全埋点** 全埋点是一种无需手动编码即可自动捕获用户交互行为的方式。它适用于快速获取大量基础数据场景下的应用开发过程中的初期探索阶段[^1]。然而需要注意的是,尽管全埋点能够覆盖大部分常见用户动作(如页面浏览、点击等),但对于特定业务逻辑或者复杂交互,则可能无法满足精细化运营的需求。 - **自定义埋点** 对于更精确的数据捕捉而言,采用代码形式实施的手动埋点更为适宜。以一个简单的例子来说就是当某个“申请”按钮被按下时触发跟踪记录:“`getApp().globalData.sensors.track(&#39;apply&#39;,{name:&#39;神策埋点&#39;})`”。这里,“apply”代表该次互动对应的唯一标识符名称;而{name: &#39;神策埋点&#39;}则构成了附加至此次事务上的额外信息字段集合。 如果希望这些新增加进去的信息能够在后续统计报表里显示出来,则必须提前前往系统后台界面内的【元数据管理】-> 【元事件】部分执行相应设定步骤才行—当然前提是整个体系处于开启严格验证状态之下才会显现相关选项入口哦! --- #### 3. **埋点事件的实际运用案例** 下面给出一段基于Kafka消息队列机制配合异步处理技术来优化用户体验流畅度的同时又能保障重要商业指标得以有效监控的一个典型应用场景描述: ```java // Kafka Producer Code Example import org.springframework.kafka.core.KafkaTemplate; @Service public class OrderService { @Autowired private KafkaTemplate<String, String> kafkaTemplate; public void placeOrder(Order order){ try { // 主流程逻辑... // 异步调用神策埋点接口 trackEvent(order); } catch (Exception e) { log.error("Error placing order", e); } } @Async private void trackEvent(Order order){ StringBuilder eventData = new StringBuilder(); eventData.append("{\"event\":\"order_placed\",\"properties\":{"); eventData.append("\"orderId\":\"").append(order.getId()).append("\","); eventData.append("\"amount\":\"").append(order.getAmount()).append("\"}}"); kafkaTemplate.send("sensors_data_topic", eventData.toString()); } } ``` 上述代码片段展示了订单服务内部是如何利用Spring框架所提供的@Async注解特性达成既不影响主线程正常运转节奏又可及时向外部第三方服务平台汇报最新动态的目的。最终由Kafka负责传递给目标消费端进一步解析处理后再提交至上层展示层面供决策参考使用[^3]。 --- #### 4. **测试与调试** 无论采取何种型的埋点手段,在部署上线前都应充分做好各项功能性的检验核实作业。特别是在启用全新版本号之后更要密切关注可能出现的新状况变化趋势走向等问题所在之处加以修正完善直至达到预期效果为止。比如说可以通过激活内置的日志打印开关功能辅助定位潜在隐患位置以便迅速作出反应调整措施等等[^5]。 --- ### 结论 综上所述,要成功构建起一套完整的神策数据分析解决方案离不开前期细致周密规划安排加上后期持续不断地维护改进努力共同作用的结果体现出来的价值意义非凡巨大无比啊朋友们加油吧!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值