文章目录
CXPlain: Causal Explanations for Model Interpretation under Uncertainty(不确定性下的模型因果解释)
思路:将为机器学习模型的决策提供解释的任务作为因果学习任务,并训练因果解释(CXPlain)模型,以便在另一个机器学习模型中估计某些输入导致的输出
贡献:
- 引入因果解释(CXPlain)模型,这是一种新的学习方法,用于准确估计任何机器学习模型的特征重要性。
- 提出了一种基于bootstrap重采样的方法来对CXPlain提供的特征重要性分数进行不确定性估计。
- 我们的实验表明,CXPlain比现有的不确定模型的方法(在评估时)更准确,速度也更快,而且它所分配的特征重要度分数的不确定度估计数与以前未见的测试数据上所提供的重要度分数的准确性密切相关。
现有方法
都是一些解释模型常用的方法:比如基于梯度的方法,量化模型对输入敏感性的方法(LIME,SHAP),测量去除特征后模型置信度变化的方法,模拟模型的方法(代理模型)
从这个图片可以看出来,该篇所述模型具有各种优点,我们一起来看看究竟是怎么实现的
问题定义
预测模型 f ^ \hat f f^,输入 X X X包含 p p p个特征或者特征组,输出 y ^ ∈ R k \hat y \in \mathbb R^k y^∈Rk,预测模型根据目标函数: y × y ^ → s y×\hat y\rightarrow s y×y^→s计算出loss s ∈ R s \in \mathbb R s∈R,不需要了解模型做了什么。同时给出样本协变量X和输出y作为训练数据,目标是训练一个解释模型 f ^ e x p \hat f_{exp} f^exp产生准确估计 A ^ \hat A A^,其中的每个 a i a_i ai对应于预测模型对于特征 x i x_i xi的权重。
因果解释模型(CXPlain)
这种灵活的框架的优点,我们不需要再训练或调整预测模型 f ^ \hat f f^解释其决策。为了训练解释模型,我们使用一个因果目标函数来量化单个输入特征或一组输入特征对预测模型准确性的边际贡献。从本质上说,这种方法将为给定的预测模型生成特征重要性估计的任务转换为一个监督学习任务,我们可以用现有的监督机器学习模型来解决这个任务。
因果关系的目标
要训练一个因果关系模型,必须知道优化的目标,最初的目标是专家来指定的,这里作者作者定义的因果关系目标是由格兰杰定义的,定义一个因果关系 x i → y i x_i \rightarrow y_i xi→yi,如果如果我们使用所有信息,比刨除 x i x_i xi能更好的预测 y ^ \hat y y^。这样的关系基于两个假设:(1)我们的一组可用变量X包含了所建模的因果问题的所有相关变量(2) x i x_i xi在时间上领先于 y ^ \hat y