GAT(参数中加入batch)

实现带有batch的GAT

作者实现的是不带batch的,踩了一点坑,自己改了一下带batch的

from torch import nn
import torch
import torch.nn.functional as F
class nconv(nn.Module):
    def __init__(self):
        super(nconv, self).__init__()

    def forward(self, x, A):
        x = torch.einsum('ncvl,vw->ncwl', (x, A))
        return x.contiguous()

class GraphAttentionLayer(nn.Module):
    """
    Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 
    图注意力层
    input: (B,N,C_in)
    output: (B,N,C_out)
    """
    def __init__(self, in_features, out_features, dropout, alpha, concat=True):
        super(GraphAttentionLayer, self).__init__()
        self.in_features = in_features   # 节点表示向量的输入特征数
        self.out_features = out_features   # 节点表示向量的输出特征数
        self.dropout = dropout    # dropout参数
        self.alpha = alpha     # leakyrelu激活的参数
        self.concat = concat   # 如果为true, 再进行elu激活
        
        # 定义可训练参数,即论文中的W和a
        self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))  
        nn.init.xavier_uniform_(self.W.data, gain=1.414)
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值