可解释性论文汇总

张拳石组可解释性论文思想汇总

1. Interpreting multivariate interactions in DNNs(2021 AAAI)

解决的问题:

  1. 衡量特征组合之间的显著性交互来解释DNN的预测
  2. NLP领域内shapely value计算的难度比较大

方法和创新:

  1. 定义和量化了DNN中多个输入变量之间的交互作用,能够同时反映变量间的正交互和负交互
  2. 通过对于交互组合的计算可以提取原型特征,从而能够从博弈交互的视角来解释DNN
  3. 通过采样方式对shapely value的值进行逼近运算

在这里插入图片描述

如图所示,其中输入特征被划分为不同的组合,代表正交互和负交互,边的粗细代表交互的强度


  • 首先是对于shapely value的定义,可以将神经网络的预测看做一个多个玩家(特征)的游戏(预测),每个玩家对于游戏结果的边际贡献可以根据公式进行计算

ϕ v ( i ∣ N ) = ∑ S ⊆ N \ { i } ( n − ∣ S ∣ − 1 ) ! ∣ S ∣ ! n ! [ v ( S ∪ { i } ) − v ( S ) ] \phi _ { v } ( i | N ) = \sum _ { S \subseteq N \backslash \{ i \} } \frac { ( n - | S | - 1 ) ! | S | ! } { n ! } [ v ( S \cup \{ i \} ) - v ( S ) ] ϕv(iN)=SN\{i}n!(nS1)!S![v(S{i})v(S)]

  • 两个玩家间的交互(将{i,j}组合看做一个玩家)

B ( S i j ) = ϕ ( S i j ∣ N ′ ) − [ ϕ ( i ∣ N i ) + ϕ ( j ∣ N j ) ] B ( S _ { i j } ) = \phi ( S _ { i j } | N ^ { \prime } ) - [ \phi ( i | N _ { i } ) + \phi ( j | N _ { j } ) ] B(Sij)=ϕ(SijN)[ϕ(iNi)+ϕ(jNj)]

  • 同理推广到多个玩家间的交互

B ( [ A ] ) = ϕ ( [ A ] ∣ N [ A ] ) − ∑ i ∈ A ϕ ( i ∣ N i ) B ( [ A ] ) = \phi ( [ A ] | N _ { [ A ] } ) - \sum _ { i \in A } \phi ( i | N _ { i } ) B([A])=ϕ([A]N[A])iAϕ(iNi)
但是这里的问题在于A这个子集的shapely value是所有A中元素组合交互的结果,这样计算不能反应A中的正交互和负交互,所以这里假设A被划分为了更多小联盟的集合 Ω = { C 1 , C 2 , ⋯   , C k } \Omega = \{ C _ { 1 } , C _ { 2 } , \cdots , C _ { k } \} Ω={C1,C2,,Ck},这样的话上式可以被写成

B max ⁡ ( [ A ] ) = max ⁡ Ω ∑ C ∈ Ω ϕ ( C ∣ N C ) − ∑ i ∈ A ϕ ( i ∣ N i ) ( 量 化 正 交 互 影 响 ) B min ⁡ ( [ A ] ) = min ⁡ Ω ∑ C ∈ Ω ϕ ( C ∣ N C ) − ∑ i ∈ A ϕ ( i ∣ N i ) ( 量 化 负 交 互 影 响 ) B _ { \max } ( [ A ] ) = \max _ { \Omega } \sum _ { C \in \Omega } \phi ( C | N _ { C } ) - \sum _ { i \in A } \phi ( i | N _ { i } )(量化正交互影响)\\ B _ { \min } ( [ A ] ) = \min _ { \Omega } \sum _ { C \in \Omega } \phi ( C | N _ { C } ) - \sum _ { i \in A } \phi ( i | N _ { i } )(量化负交互影响) Bmax([A])=ΩmaxCΩϕ(CNC)iAϕ(iNi)Bmin([A])=ΩminCΩϕ(CNC)iAϕ(iNi)

**指标T([A])**同时量化正交互和负交互
T ( [ A ] ) = B max ⁡ ( [ A ] ) − B min ⁡ ( [ A ] ) = max ⁡ Ω ∑ C ∈ Ω ϕ ( C ∣ N C ) − min ⁡ Ω ∑ C ∈ Ω ϕ ( C ∣ N C ) T ( [ A ] ) = B _ { \max } ( [ A ] ) - B _ { \min } ( [ A ] )=\max _ { \Omega } \sum _ { C \in \Omega } \phi ( C | N _ { C } ) - \min _ { \Omega } \sum _ { C \in \Omega } \phi ( C | N _ { C } ) T([A])=Bmax([A])Bmin([A])=ΩmaxCΩϕ(CNC)ΩminCΩϕ(CNC)

这里关于 ϕ ( C ∣ N C ) \phi ( C | N _ { C } ) ϕ(CNC)的计算可以用采样的方式进行近似(Polynomial calculation of the Shapley value based on sampling 2009)


在这里插入图片描述

然后对于C的划分也采用采样近似方法,因为是NLP,所以作者提出用 p = { p 1 , p 2 , ⋯   , p m − 1 } p = \{ p _ { 1 } , p _ { 2 } , \cdots , p _ { m - 1 } \} p={p1,p2,,pm1}来代表所有可能的划分,其中 p i p_i pi代表第i和i+1词属于同一个划分的概率,然后根据这个概率分布进行进行采样得到 g = { g 1 , g 2 , ⋯ g m − 1 } g = \{ g _ { 1 } , g _ { 2 } , \cdots g _ { m - 1 } \} g={g1,g2,gm1},g是复合伯努利分布, g i = 1 g_i=1 gi=1代表我们的i和i+1属于同一个组合,然后可以得到


在这里插入图片描述

然后可以通过下式来近似计算


在这里插入图片描述

2. Interpreting and Boosting Dropout from a Game-Theoretic View(2021 ICLR)

解决的问题

  1. 数学及实验证明了dropout能够通过抑制DNN中的特征的交互作用来防止过拟合
  2. 过拟合采样通常比其他采样样本有更大的交互作用
  3. 通过上述证明了dropout的作用的原因,并根据博弈论观点设计了loss来提升dropout的性能
  4. 分析了DNN的交互特征关系

方法和创新

  • 定义由深度神经网络编码的交互(两个特征间)
    I ( i , j ) =  def  ϕ ( S i j ∣ N ′ ) − [ ϕ ( i ∣ N \ { j } ) + ϕ ( j ∣ N \ { i } ) ] = ∑ S ⊆ N \ { i , j } P  Shapley  ( S ∣ N \ { i , j } ) Δ f ( S , i , j ) I ( i , j ) = ∑ s = 0 n − 2 [ I ( s ) ( i , j ) n − 1 ] , I ( s ) ( i , j ) =  def  E S ⊆ N \ { i , j } , ∣ S ∣ = s [ Δ f ( S , i , j ) ] I ( i , j ) \stackrel { \text { def } } { = } \phi ( S _ { i j } | N ^ { \prime } ) - [ \phi ( i | N \backslash \{ j \} ) + \phi ( j | N \backslash \{ i \} ) ] = \sum _ { S \subseteq N \backslash \{ i , j \} } P _ { \text { Shapley } } ( S | N \backslash \{ i , j \} ) \Delta f ( S , i , j )\\I ( i , j ) = \sum _ { s = 0 } ^ { n - 2 } [ \frac { I ^ { ( s ) } ( i , j ) } { n - 1 } ] , \quad I ^ { ( s ) } ( i , j ) \stackrel { \text { def } } { = } E _ { S \subseteq N \backslash \{ i , j \} , | S | = s } [ \Delta f ( S , i , j ) ] I(i,j)= def ϕ(SijN)[ϕ(iN\{j})+ϕ(jN\{i})]=SN\{i,j}P Shapley (SN\{i,j})Δf(S,i,j)I(i,j)=s=0n2[n1I(s)(i,j)],I(s)(i,j)= def ESN\{i,j},S=s[Δf(S,i,j)]
    其中 P  Shapley  ( S ∣ N \ { i , j } ) = ( n − ∣ S ∣ − 2 ) ! ∣ S ∣ ! ( n − 1 ) ! P _ { \text { Shapley } } ( S | N\backslash\{i,j\} ) = \frac { (n - | S | -2) ! | S | ! } { ( n-1 ) ! } P Shapley (SN\{i,j})=(n1)!(nS2)!S!,通过定义进行可视化之后(将图片划分为16*16的网格,然后计算邻居网格间的相互作用,并对结果进行可视化),可以看出DNN对于对于网络的交互主要集中在人脸部分
    在这里插入图片描述
  • dropout和交互关系的证明
    考虑一个子集 T ⊆ S T \subseteq S TS,用 T ∪ { i , j } T \cup \{ i , j \} T{i,j}来代表一个子推理模式,例如S代表人脸,那么 T ⊆ S T \subseteq S TS代表眼睛,用 R T ( i , j ) R ^ { T } ( i , j ) RT(i,j)代表子模式产生的边际贡献,其中移除了所有更小子集的交互影响 T ′ ⫋ T T ^ { \prime } \varsubsetneqq T TT,也就是说推理神经网络推理时,只能够被完整的子推理模式出发影响,但是不能被局部子推理模式触发影响,最终可以将s阶交互写成如下形式
    I ( s ) ( i , j ) = E S ⊆ N \ { i , j } , ∣ S ∣ = s [ ∑ T ⊆ S R T ( i , j ) ] = ∑ 0 ≤ q ≤ s ( s   q ) J ( q ) ( i , j ) = ∑ 0 ≤ q ≤ s Γ ( q ) ( i , j ∣ s ) I ^ { ( s ) } ( i , j ) = E _ { S \subseteq N \backslash \{ i , j \} , | S | = s } [ \sum _ { T \subseteq S } R ^ { T } ( i , j ) ] = \sum _ { 0 \leq q \leq s } \left( \begin{array} { l } { s } \ { q } \end{array} \right) J ^ { ( q ) } ( i , j ) = \sum _ { 0 \leq q \leq s } \Gamma ^ { ( q ) } ( i , j | s ) I(s)(i,j)=ESN\{i,j},S=s[TSRT(i,j)]=0qs(s q)J(q)(i,j)=0qsΓ(q)(i,js)
    当使用dropout后,由于会随机丢掉一些特征,假设我们只考虑没有丢掉的特征 S ′ ⊆ S S ^ { \prime } \subseteq S SS,且 ∣ S ′ ∣ = r | S ^ { \prime } | = r S=r,则经过dropout之后的组分贡献计算如下:
    I  dropout  ( s ) ( i , j ) = E S ⊆ N \ { i , j } , ∣ S ∣ = s [ E S ′ ⊆ S , ∣ S ′ ∣ = r ( ∑ T ⊆ S ′ R T ( i , j ) ) ] = ∑ 0 ≤ q ≤ r Γ ( q ) ( i , j ∣ r ) I _ { \text { dropout } } ^ { ( s ) } ( i , j ) = \underset { S \subseteq N \backslash \{ i , j \} , | S | = s } { E } [ \underset { S ^ { \prime } \subseteq S , | S ^ { \prime } | = r } { E } ( \sum _ { T \subseteq S ^ { \prime } } R ^ { T } ( i , j ) ) ] = \sum _ { 0 \leq q \leq r } \Gamma ^ { ( q ) } ( i , j | r ) I dropout (s)(i,j)=SN\{i,j},S=sE[SS,S=rE(TSRT(i,j))]=0qrΓ(q)(i,jr)
    由此式,可得:
    1 ≥ Γ ( 1 ) ( i , j ∣ r ) Γ ( 1 ) ( i , j ∣ s ) ≥ ⋯ ≥ Γ ( r ) ( i , j ∣ r ) Γ ( r ) ( i , j ∣ s ) ≥ 0 , I  dropout  ( s ) ( i , j ) I ( s ) ( i , j ) = ∑ 0 ≤ q ≤ r Γ ( q ) ( i , j ∣ r ) ∑ 0 ≤ q ≤ s Γ ( q ) ( i , j ∣ s ) ≤ 1 1 \geq \frac { \Gamma ^ { ( 1 ) } ( i , j | r ) } { \Gamma ^ { ( 1 ) } ( i , j | s ) } \geq \cdots \geq \frac { \Gamma ^ { ( r ) } ( i , j | r ) } { \Gamma ^ { ( r ) } ( i , j | s ) } \geq 0 , \quad \frac { I _ { \text { dropout } } ^ { ( s ) } ( i , j ) } { I ^ { ( s ) } ( i , j ) } = \frac { \sum _ { 0 \leq q \leq r } \Gamma ^ { ( q ) } ( i , j | r ) } { \sum _ { 0 \leq q \leq s } \Gamma ^ { ( q ) } ( i , j | s ) } \leq 1 1Γ(1)(i,js)Γ(1)(i,jr)Γ(r)(i,js)Γ(r)(i,jr)0,I(s)(i,j)I dropout (s)(i,j)=0qsΓ(q)(i,js)0qrΓ(q)(i,jr)1
    右边可以看出当使用dropout后,推理模式的矢量通常会显著减少
    然后文章通过实验证明了:1. 当使用dropout时拥有更多激活单元(即交互阶数越高)的推理模式更不容易被采样,因此对于dropout的影响更大 2. 使用dropout以后会明显降低交互
    在这里插入图片描述
    阶数高的交互在dropout后被显著抑制了

在这里插入图片描述

在使用dropout后整个图像的交互都被抑制了
  • 交互强度和过拟合之间的关系
    在分类任务中,过拟合的样本通常是异常样本,过拟合样本通常比正常样本造成更强的交互作用
    在这里插入图片描述
  • 通过交互关系loss来提高dropout的表现
     Loss  = L o s s c l a s s i f i c a t i o n + λ L o s s i n t e r a c t i o n \text { Loss } = Loss_{classification} + \lambda Loss_{interaction}  Loss =Lossclassification+λLossinteraction
    这里考虑RELU后的中间层,包含n个units,目标是降低任意两个units间的交互关系,可以得到下式
     Lossinteraction  = E i , j ∈ N , i ≠ j [ ∣ I ( i , j ) ∣ ] = E i , j ∈ N , i ≠ j [ ∣ ∑ S ⊆ N \ { i , j } P  Shapley  ( S ∣ N \ { i , j } ) [ Δ f ( S , i , j ) ] ∣ ] \text { Lossinteraction } = E _ { i , j \in N , i \neq j } [ | I ( i , j ) | ] = E _ { i , j \in N , i \neq j } [ | \sum _ { S \subseteq N \backslash \{ i , j \} } P _ { \text { Shapley } } ( S | N \backslash \{ i , j \} ) [ \Delta f ( S , i , j ) ] | ]  Lossinteraction =Ei,jN,i=j[I(i,j)]=Ei,jN,i=j[SN\{i,j}P Shapley (SN\{i,j})[Δf(S,i,j)]]
    由于求解每对特征间的交互计算代价很大,所以采用近似计算,所以采样不相交的子集A,B来计算(可以看做是对于单元对的关于batch的采样,相应的近似计算可以如下:
     Loss   interaction  ′ = E A , B ≠ N , A ∩ B = ∅ , ∣ A ∣ = ∣ B ∣ = α n { E r [ E ∣ S ∣ = r , S ⊆ N \ A \ B [ Δ f ( S , A , B ) 2 ] ] } \text { Loss } _ { \text { interaction } } ^ { \prime } = E _ { A , B _ { \neq } N , A \cap B = \emptyset , | A | = | B | = \alpha n } \{ E _ { r } [ E _ { | S | = r , S \subseteq N \backslash A \backslash B } [ \Delta f ( S , A , B ) ^ { 2 } ] ] \}  Loss  interaction =EA,B=N,AB=,A=B=αn{Er[ES=r,SN\A\B[Δf(S,A,B)2]]}
    根据实验,使用交互Loss能够让我们明确的控制交互强度,并且和dropout不同,交互loss能够很好的和BN相适应。
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值