Semi-Supervised GAN

1. 基本原理

GAN 基础

生成对抗网络由两个主要部分组成:

  • 生成器(Generator,G):生成逼真的数据样本,试图欺骗判别器。
  • 判别器(Discriminator,D):区分真实数据和生成的数据。

半监督学习

半监督学习利用带标签数据和未带标签数据来训练模型,旨在减少对大量标注数据的需求。SS-GAN通过修改判别器的结构,使其能够同时处理分类任务和生成任务。

2. 结构

判别器(D)

在SS-GAN中,判别器不仅需要区分真实数据和生成数据,还需要对真实数据进行分类。因此,判别器的输出层通常设计成有𝐾+1K+1个节点,其中𝐾K是分类任务的类别数,额外的一个节点用于判断输入是否为生成数据。

生成器(G)

生成器的目标保持不变,试图生成逼真的数据样本,以欺骗判别器。

3. 训练过程

带标签数据的训练

使用带标签的数据对判别器进行训练,使其能够准确分类不同类别的数据,同时区分真实数据和生成数据。具体步骤包括:

  1. 从带标签数据集中抽取一个小批量样本。
  2. 使用这些样本训练判别器,使其最大化区分真实数据的类别,同时区分真实数据和生成数据。

未带标签数据的训练

使用未带标签的数据对判别器进行训练,主要目的是增强判别器区分真实数据和生成数据的能力。具体步骤包括:

  1. 从未带标签数据集中抽取一个小批量样本。
  2. 生成器生成一个小批量的假样本。
  3. 使用这些未带标签的真实样本和生成样本训练判别器,使其最大化区分真实数据和生成数据。

生成器的训练

生成器的训练目标是最小化判别器将生成样本判定为假的概率。具体步骤包括:

  1. 生成器生成一个小批量的假样本。
  2. 使用这些假样本更新生成器的参数,使得判别器更难以区分这些生成样本和真实样本。

4. 应用

SS-GAN在各种任务中都有广泛应用,特别是在标注数据稀缺的场景中。常见应用包括:

  • 图像分类:在只有少量标注数据的情况下,通过SS-GAN提升图像分类模型的性能。
  • 图像生成:生成逼真的图像样本,同时利用少量标注数据提高生成质量。
  • 语音识别:在语音数据标注成本高的情况下,利用SS-GAN提升语音识别模型的效果。

5. 优势

  • 减少标注数据需求:SS-GAN利用大量未标注的数据,有效减少对标注数据的依赖。
  • 提高分类性能:通过结合生成对抗网络的特性,SS-GAN能够提升分类任务的性能,特别是在标注数据不足的情况下。
  • 生成高质量样本:生成器在训练过程中不断改进,能够生成高质量的假样本。

命令行参数:

生成器:

判别器:

初始化,加载数据:

训练函数:

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值