A: Winner - Take - All(胜者为王)学习规则是一种竞争关系的学习规则,用于无监督学习,一般将网络的某一层确定为竞争层,对于一个特定的输入x,竞争层的所有的p个神经元均有输出响应,其中响应值最大的神经元为在竞争中获胜的神经元,即:
只有获胜的神经元才有权调整其向量Wm,调整量为:
由于两个向量的点积越大,表明两者越相近,所以调整获胜神经元权值的结果是使wm进一步接近当前输入x,显然下次出现与x相似的输入模式时,上次获胜的神经元更容易获胜,在反复的竞争学习中,竞争层的个各神经元所对应的权向量被逐渐调整为输入样本空间的聚类中心。
B:
- 假设输入信息为n维向量,该向量与权值向量连接,输出到输出神经元Y中,Y采用硬限幅函数作为传递函数,限定输出为1和0
- 内星模型训练的目标使得神经元Y只对某些特定的输入向量产生兴奋,即在Y出的神经元输出为1
- 通过学习速率η对权值进行调整,当Y=1时,权值进行调整,当Y=0时,权值不做调整,最终得到的网络权值趋近于各输入向量的平均值