信号处理
没用的阿鸡
不知咋办
展开
-
信号处理之最大似然估计(自学整理)
信号处理之最大似然估计(自学整理)最大似然估计基本思想:在对被估计的未知量(或参数)没有任何先验知识的情况下,利用已知的若干观测值估计该参数。因此,在使用最大似然估计方法时,被估计的参数假定是常数且未知,已知的观测数据则是随机变量。设随机变量x的N个观测值为设参数为θ,在给定参数θ情况下观测样本的联合条件概率密度函数为所以,似然函数就是最大似然估计就是求因此,最大似然估计也可以看做是似然函数的全局极大点。对数似然函数记为因此,θ的最大似然估计的优化条件是在一般条件下,原创 2021-12-04 11:06:49 · 4691 阅读 · 0 评论 -
在python中用pyTorch搭建CNN神经网络实现数字(0~9)语音识别
在python中用pyTorch搭建CNN神经网络实现数字(0~9)语音识别1.收集训练数据speech_commands_v0.01.tar.gzhttp://download.tensorflow.org/data/speech_commands_v0.01.tar.gz自己用迅雷下载什么都行(推荐迅雷)2.准备环境①pycharm软件②cuda和cudnn(我的是11.3)③python(我的是3.9)④支持cuda的pytorch对于环境的准备,老样子,自己csdn查教程一大把。原创 2021-08-16 10:01:21 · 7455 阅读 · 34 评论 -
用python实现基于PANN(retrained Audio Neural Networks)的声音检测方法
用python实现基于PANN的声音事件检测方法1.PANN国外论文:《PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition》在本文中,我们提出了在大规模音频集数据集上训练的预先训练的音频神经网络(PANNs)。这些面板被转移到其他与音频相关的任务中。我们研究了由各种卷积神经网络建模的粒子的性能和计算复杂度。我们提出了一种称为波图-Logmel-CNN的架构,使用Log-mel谱图和波形作为原创 2021-07-28 21:00:03 · 5138 阅读 · 10 评论 -
用python实现语音端点检测(Voice Activity Detection,VAD)
用python实现语音端点检测(Voice Activity Detection,VAD)1.准备环境https://github.com/marsbroshok/VAD-python里面的vad.py文件2.具体代码from vad import VoiceActivityDetectorimport waveif __name__ == "__main__": load_file = "test.wav" save_file = "process.wav" # 获原创 2021-07-17 11:48:45 · 5986 阅读 · 6 评论 -
如何用python画出语谱图(spectrogram)和mel谱图(mel spectrogram)
如何用python画出语谱图(spectrogram)和mel谱图(mel spectrogram)1.准备环境①python②libsora③matplotlibNotes:pip install 直接一步到位2.具体代码①语谱图(spectrogram)import librosaimport numpy as npimport matplotlib.pyplot as pltpath = "./test.wav"# sr=None声音保持原采样频率, mono=False声原创 2021-07-15 10:41:48 · 13056 阅读 · 6 评论 -
python实现Logmmse声音降噪算法
python实现Logmmse声音降噪算法1.所需环境pip install logmmsepip install wavepip install numpy2.具体代码import logmmseimport waveimport numpy as npif __name__ == '__main__': # out = logmmse.logmmse_from_file('B000_0000.wav') # print(out) # 读取音频 pa原创 2021-07-13 20:38:16 · 3783 阅读 · 0 评论 -
短时傅里叶变换原理及其MATLAB实现(Short Time Fourier Transform,STFT)
短时傅里叶变换原理及其MATLAB实现(Short Time Fourier Transform,STFT)1.短时Fourier变换原理(STFT原理)信号x(t)短时Fourier变换定义为:其中w(τ)为窗函数。X(ω,t)中的时间t表示窗函数w(τ−t)的位置,随着窗函数在整个区间上的滑动,可获得信号x(τ)在 t 附近区域上对应的频谱。信号短时Fourier变换是一种常用的信号时频分析方法。2.DFT中的STFT原理信号x(t)的STFT是一个积分运算,在实际计算中也可通过DFT来原创 2021-06-28 17:49:07 · 8987 阅读 · 3 评论