凸集(Convex sets)
1.仿射集和凸集
仿射集(Affine set):
定义:如果通过C中任意两个不同点的线位于C中,则集合C⊆Rn就是仿射
其中,
凸集(Convex set):
定义:如果C中的任意两点之间的线段为C,则集合C是凸的
其中,
例子:
左侧,六边形,包括它的边界(显示较深),是凸的。
中间,肾形集合不是凸的,因为集合中显示的两个点之间的线段不包含在集合中。
右侧,该正方形包含一些边界点,但不包含其他边界点,并且不是凸的。
凸包(convex hulls)
集合C的凸壳,表示 conv C,是C中点的所有凸组合的集合
例子:
左侧,一组15个点(显示为点)的凸壳是五角形(显示阴影)
右侧,肾形集合的凸面壳是阴影集。
凸锥(convex Cones)
一个集合C是一个凸锥,如果它既是凸集又是一个锥,这意味着对于任何x1,x2∈C和θ1,θ2≥0,我们有
集合C的圆锥壳是C中所有圆锥组合的集合,
例子:
如图所示,饼状切片显示了θ1x1+θ2x2形式的所有点,切片的顶点(对应于θ1=θ2=0)为0;它的边缘(对应于θ1=0或θ2=0)穿过点x1和x2。
如图所示,两个集合的圆锥形外壳(显示阴影)
超平面和半空间(Hyperplanes and halfspaces)
超平面被定义为
其中a∈Rn、a=0和b∈R。详细来讲,它是x的分量之间的一个非平凡线性方程的解集(因此是一个仿射集)。
如图所示,超平面由一个偏移量x0,加上正交于(法态)向量a的所有向量组成。
一个超平面将Rn划分为两个半空间。
半空间被定义为
一个(非平凡的)线性不等式的解集。半部空间是凸的,但不是仿射的。
如图所示,由R2中由aTx=b定义的超平面决定了两个半空间。由aTx≥b(非阴影)确定的半空间是沿a方向延伸的半空间。由aTx≤b确定的半空间(显示阴影)沿−a方向延伸。向量a是这个半空间的向外法线。
半空间也可以表示为
其中x0是相关的超平面上的任意点,即满足aTx0=b。这提出了一个简单的几何解释:半空间由x0加上任何形成钝角(或右向角的向量组成)
如图所示,阴影集是由aT(x−x0)≤0确定的半空间。向量x1−x0与a形成锐角,所以x1不在半空间中。向量x2−x0与a形成钝角,在半空间中也是如此。
欧几里得球与椭球(Euclidean balls and ellipsoids)
一个欧几里得球(或只是球)被定义为
其中,r>0和||·||2表示欧几里得范数,即||u||2=(uTu)1/2。xc是球的中心,r是其半径
B(xc,r)由中心xc距离r内的所有点组成。
欧几里得球的另一个常见的表示法是
欧几里得球是一个凸集:如果||x1−xc||2≤r、||x2−xc||2≤r和0≤θ≤1,然后
椭球体,它被定为
其中,P=PT≻0,P是对称的和正定的。向量xc∈Rn是椭圆体的中心。矩阵P决定了椭球体从xc开始的各个方向延伸的距离;E的半轴的长度由√λi给出,其中λi是P的特征值。
例子
中心xc显示为一个点,而两个半轴显示为线段。
椭球体的另一个常见的表示形式是
其中,A是正方形的,且为非单数。
范数球和范数锥(Norm balls and norm cones)
范数球,被定义为
范数锥被定义为
它是(顾名思义)是一个凸锥
如图所示,他是二阶锥,是欧几里得范数的范数锥。
多面体(Polyhedra)
一个多面体被定义为一个有限数量的线性等式和不等式的解集:
因此,多面体是有限数量的半空间和超平面的交点。仿射集(例如,子空间、超平面、线)、射线、线段和半空间都是多面体。
例子:
如图所示,多面体P(显示阴影)是五个半空间的交点,外正规向量a1……a5.
多面体也可以表示为
u<_v表示ui≤vi,i=1,…,m。
单纯形(Simplexes)
单纯形是多面体的另一个重要的族。被定义为
其中,1表示包含所有项1的向量。
多面体的凸壳体描述(Convex hull description of polyhedra)
有限集的凸壳,被定义为
这种凸壳描述的一个推广是
其中,为m≤k。
正半定锥(The positive semidefinite cone)
我们使用符号Sn来表示对称的n×n矩阵的集合,
它是一个维数为n(n+1)/2的向量空间。
我们使用符号Sn+来表示对称正半定矩阵的集合:
用符号Sn++表示对称正定矩阵集:
这个符号意味着类似于R+,它表示非负实数,而R++则表示正实数。
如图所示,正半定锥的边界
ok,没了,简单型的看图学知识