/*
* [题意本质]
* 输入n,如果n的约数个数是奇数,输出yes,否则输出no
* (注:n的约数不包括1和n本身,不过包括也不影响奇偶性)
*
* [解题方法]
* 1、最简单普通的做法:
* 枚举i(1<i<=sqrt(n)),累计约数个数,复杂度sqrt(n),结果超时TLE
* 2、素数筛法加速+简单组合数学:
* 约数个数 = 累乘(f(pi)+1),结果AC,1秒左右
* (f(pi)表示n中有多少个pi相乘)
* (组合数学理解:假设有n中3个pi,那么我可以选0个,1个,2个,3个,共4种方法,即f(pi)+1)
*/
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
using namespace std;
#define LL long long
#define M 100005
#define inf 0x3fffffff
int p[9600], vis[M], k;
int main()
{
int cnt, i, j;
LL n; //注意!n需要用longlong
for (i = 2; i < M; i++) //打sqrt(n)内的素数表即可
{
if (!vis[i])
{
p[k++] = i;
for (j = i+i; j < M; j+=i)
vis[j] = 1;
}
}
while (cin >> n, n)
{
cnt = 1;
//p[i]*p[i] <= n 是非常重要的条件!
//因为大于sqrt(n)的素性约数最多只有一个
for (i = 0; i < k && (LL)p[i]*p[i] <= n; i++)
{
if (n % p[i] == 0)
{
int tp = 1;
do
n /= p[i], ++tp;
while (n % p[i] == 0);
cnt *= tp;
}
}
//n>1说明有个比sqrt(n)大的素性约数,不能漏了
if (n > 1) cnt *= 2;
if (cnt & 1) puts("yes");
else puts("no");
}
return 0;
}
UVA 10110 Light, more light
最新推荐文章于 2024-11-12 12:29:51 发布