多模态之论文笔记BLIP,BLIP2,Instruct BLIP

本文深入探讨了BLIP、BLIP2和Instruct BLIP这三项视觉语言预训练技术。BLIP通过多模态混合编码器(MED)和Captioning and Filtering(CapFilt)算法,提升模型在理解和生成任务上的性能。BLIP2引入Querying Transformer(Q-Former)进行两阶段预训练,降低了训练成本。Instruct BLIP则提出指令感知的视觉特征提取,增强了模型的泛化能力,通过广泛的指令微调在多个视觉语言任务上取得SOTA结果。



BLIP

一. 简介

题目: BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
机构:salesforce research
论文: https://arxiv.org/pdf/2201.12086.pdf
代码:https://github.com/salesforce/BLIP
任务: 视觉语言预训练
特点: 联合视觉语言理解以及生成,web 文本数据bootstrapping
方法: 模型侧设计了MED,数据侧用captioner以及filter进行文本的生成以及噪声过滤
前置相关工作:ALBEF

1.1 摘要与引言

视觉语言预训练(VLP)在许多视觉语言任务上取得了很好的表现。但现有的预训练模型大多数仅在基于理解的任务或者基于生成的任务取得了进展。除此之外,通过网上收集带噪声的海量图文尽管能够带来效果的提升,但往往是一个次优的监督数据源。本文中,我们提出了BLIP方法,一个新的视觉语言预训练框架,能够很灵活地迁移到视觉语言理解以及生成的

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猴猴猪猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值