24、迈向知识层面的 A&A 模型

迈向知识层面的 A&A 模型

在知识层面,我们致力于丰富相关概念框架,将环境与智能体及智能体组织置于同一抽象层次进行考量。这一理念受 A&A 模型启发,把资源和工具建模为一等公民的人工制品,智能体和组织可以构建、使用和共享这些人工制品,以实现它们的个体和社会目标。人工制品和 A&A 概念模型的灵感主要来源于活动理论和分布式认知理论,这些理论深入探讨了环境在支持人类广泛活动(如认知、推理、学习等)中所起的作用。

从工程角度来看,人工制品用于建模系统中那些不能有效描述为以目标为导向的基于知识的系统,而是更倾向于以功能或服务为导向的组件,供目标导向的系统使用。与为人类设计的人工制品类似,为智能体设计的人工制品的一个关键特性是它们提供的可供性,这些可供性定义了智能体与人工制品进行有效交互的模型,其基于可观察属性、操作(从智能体的角度来看即动作)和可观察事件。此外,还有人工制品手册的概念,它是一份描述人工制品功能以及如何与之交互的文档。

为了让智能体在知识层面有效利用人工制品,这些人工制品的设计和构思也应处于同一层面。接下来,我们将探讨如何进一步完善和扩展 A&A 模型,以实现这一目标。

知识层面的基于人工制品的环境

在知识层面使用 A&A 意味着基于人工制品的环境可供智能体感知和作用于领域实体(可能代表现实世界中的资产),同时创建和利用有助于实现其目标的资源和工具。为了实现这一目标,我们设想对 A&A 模型进行进一步细化和特征化,具体包括以下几点:
- 语义关联 :人工制品应在知识层面与领域实体进行语义关联,其可供性和手册应在相同的抽象层面进行描述。
-

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值