conda安装tensorflow

conda安装会自动检查依赖库和版本冲突,在tensorflow安装中尝试一下。

1. 首先,安装conda工具,anconda太重,可以安装miniconda

链接 Installing on Linux — conda 4.12.0.post6+e7012690 documentation

下载最新的 .sh文件,就可以运行安装了, 注意64位。

2. 安装完成后,默认是python3.8,所以可能需要管理多个虚拟环境

常见命令

2.conda常用的命令

1)查看安装了哪些包

conda list

2)查看当前存在哪些虚拟环境

conda env list 
conda info -e

3)检查更新当前conda

conda update conda

3.Python创建虚拟环境

conda create -n your_env_name python=x.x

anaconda命令创建python版本为x.x,名字为your_env_name的虚拟环境。your_env_name文件可以在Anaconda安装目录envs文件下找到

4.激活或者切换虚拟环境

打开命令行,输入python --version检查当前 python 版本。

Linux:  source activate your_env_nam
Windows: activate your_env_name

5.对虚拟环境中安装额外的包

conda install -n your_env_name [package]

6.关闭虚拟环境(即从当前环境退出返回使用PATH环境中的默认python版本)

deactivate env_name
或者`activate root`切回root环境
Linux下:source deactivate 

7.删除虚拟环境

conda remove -n your_env_name --all

8.删除环境钟的某个包

conda remove --name $your_env_name  $package_name 

8、设置国内镜像

http://Anaconda.org的服务器在国外,安装多个packages时,conda下载的速度经常很慢。清华TUNA镜像源有Anaconda仓库的镜像,将其加入conda的配置即可:

# 添加Anaconda的TUNA镜像

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

# TUNA的help中镜像地址加有引号,需要去掉

# 设置搜索时显示通道地址

conda config --set show_channel_urls yes

9、恢复默认镜像

conda config --remove-key channels

安装tensorflow

验证GPU正确安装

>>> import tensorflow
>>> import tensorflow as tf
>>> tf.__version__
'2.2.0'
>>> print(tf.test.is_gpu_available())
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2020-12-06 10:43:26.108332: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2020-12-06 10:43:26.135734: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 2599990000 Hz
2020-12-06 10:43:26.136128: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x563b0662e970 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-12-06 10:43:26.136145: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
2020-12-06 10:43:26.143076: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-12-06 10:43:26.158243: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-12-06 10:43:26.158536: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1660 Ti computeCapability: 7.5
coreClock: 1.59GHz coreCount: 24 deviceMemorySize: 5.80GiB deviceMemoryBandwidth: 268.26GiB/s
2020-12-06 10:43:26.158685: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-12-06 10:43:26.159938: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-12-06 10:43:26.161054: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-12-06 10:43:26.161250: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-12-06 10:43:26.162503: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-12-06 10:43:26.163365: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-12-06 10:43:26.166072: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-12-06 10:43:26.166153: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-12-06 10:43:26.166463: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-12-06 10:43:26.166713: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
2020-12-06 10:43:26.166740: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-12-06 10:43:26.230760: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-12-06 10:43:26.230791: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108]      0
2020-12-06 10:43:26.230799: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0:   N
2020-12-06 10:43:26.230963: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-12-06 10:43:26.231265: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-12-06 10:43:26.231517: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-12-06 10:43:26.231817: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/device:GPU:0 with 5058 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1660 Ti, pci bus id: 0000:01:00.0, compute capability: 7.5)
2020-12-06 10:43:26.233295: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x563b07f1e220 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-12-06 10:43:26.233307: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): GeForce GTX 1660 Ti, Compute Capability 7.5
True
>>> tf.config.list_physical_devices('GPU')
2020-12-06 10:44:00.341738: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-12-06 10:44:00.342919: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1660 Ti computeCapability: 7.5
coreClock: 1.59GHz coreCount: 24 deviceMemorySize: 5.80GiB deviceMemoryBandwidth: 268.26GiB/s
2020-12-06 10:44:00.343016: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-12-06 10:44:00.343065: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-12-06 10:44:00.343109: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-12-06 10:44:00.343151: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-12-06 10:44:00.343193: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-12-06 10:44:00.343235: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-12-06 10:44:00.343279: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-12-06 10:44:00.343442: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-12-06 10:44:00.344645: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-12-06 10:44:00.345707: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
>>>


注意,其实很多文档提到的测试方法其实已经过时了

WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.

<think>好的,用户现在想安装TensorFlow 2.15版本。之前他们遇到了ModuleNotFoundError,提示没有tensorflow.keras模块,我之前已经指导他们安装或升级TensorFlow,现在他们可能按照建议尝试安装最新版,但需要特定版本2.15。 首先,我要确认用户为什么需要安装2.15。可能他们的项目依赖这个特定版本,或者教程、文档中使用的是这个版本。需要确保用户知道如何指定版本号安装。 接下来,安装特定版本的TensorFlow通常使用pip install tensorflow==版本号,但需要检查2.15是否存在。我记得TensorFlow的版本发布情况,比如2.15是否是一个有效版本。例如,TensorFlow 2.15可能不存在,因为官方可能已经发布了更高版本,或者可能在某个时间点停止维护某些版本。需要验证这一点,避免用户输入错误版本号导致安装失败。 假设用户可能记错了版本号,比如2.15可能不存在,或者可能是指2.5、2.10等。这时候需要提示用户检查版本是否存在,并给出正确的安装命令。比如,用户可能想安装2.15,但实际可用的是2.13或2.14,这时候需要告知用户正确的可用版本。 另外,用户可能在使用不同的包管理工具,比如pip或conda,需要分别给出对应的安装命令。还要考虑Python版本兼容性,TensorFlow 2.x通常需要Python 3.7-3.10,如果用户使用Python 3.11或更高版本,可能需要降级Python或使用其他方法。 另外,用户可能之前安装了其他版本的TensorFlow,导致冲突,所以需要提示用户先卸载旧版本,再安装指定版本。例如,使用pip uninstall tensorflow,然后再安装。 最后,安装完成后需要验证,比如运行Python导入TensorFlow并打印版本号,确保安装成功。如果用户遇到问题,可能需要检查网络连接、权限问题,或者使用镜像源加速下载。 总结步骤: 1. 确认TensorFlow 2.15是否存在,如果不存在,提示可用版本。 2. 提供正确的pip和conda安装命令。 3. 提醒Python版本兼容性。 4. 指导验证安装是否成功。 5. 处理可能的安装问题,如权限、镜像源等。 需要确保回答清晰,步骤详细,并且考虑到用户可能的操作环境和错误,比如版本错误或环境问题。同时,保持友好和帮助的态度,鼓励用户在遇到问题时进一步询问。</think>以下是安装TensorFlow 2.15的详细指南: $$\text{安装方法}$$ 1. **基础安装(推荐使用虚拟环境)** ```bash # 创建并激活虚拟环境(可选) python -m venv tf_env source tf_env/bin/activate # Linux/macOS tf_env\Scripts\activate # Windows # 安装指定版本 pip install tensorflow==2.15.0 ``` 2. **验证安装** ```python import tensorflow as tf print(tf.__version__) # 应输出2.15.0 print(tf.config.list_physical_devices()) # 检查硬件识别 ``` $$\text{版本兼容性须知}$$ - ✅ 官方支持版本:Python 3.9-3.11 - ❌ 不支持Python 2.x - ⚠️ Mac M1/M2用户需使用`tensorflow-macos`专用版本 $$\text{常见问题解决方案}$$ 1. **找不到指定版本** ```bash # 查看可用版本 pip install tensorflow==invalid 2>&1 | grep "from versions" ``` 2. **权限问题处理** ```bash # 添加用户级安装参数 pip install --user tensorflow==2.15.0 ``` 3. **使用国内镜像加速** ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==2.15.0 ``` $$\text{版本特性对比}$$ | 特性 | 2.15改进点 | |----------------------|-------------------------------| | Keras API | 完全整合到`tf.keras` | | GPU支持 | CUDA 12.0适配 | | 性能优化 | 改进XLA编译器 | | 弃用功能 | 移除部分1.x兼容API | $$\text{扩展组件安装}$$ ```bash # 可选GPU支持(需NVIDIA驱动) pip install tensorflow[and-cuda]==2.15.0 # 扩展库支持 pip install tensorflow-hub tensorflow-datasets ``` 安装完成后,建议运行以下验证脚本: ```python import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) print("安装验证通过!") ``` 如果遇到任何问题,可以提供以下信息以便进一步诊断: 1. `python --version` 输出 2. 使用的操作系统版本 3. 是否使用虚拟环境 4. 完整的错误日志
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海里的鱼2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值