移动端部署深度学习应用之yolov5--android

本文介绍了一种将YoloV5模型从PC端训练并转换为移动端TFLite模型的方法,包括从GitHub克隆预置的应用框架、训练自定义数据集、输出TFLite模型及在安卓设备上部署的过程。
部署运行你感兴趣的模型镜像

试了多种路径,此法简单易行,性能差了点,待提升,但能跑起来。 

1. 有个小伙伴做好的应用框架

git clone https://github.com/xugaoxiang/yolov5_android_tflite

运行效果没问题,就是实际识别速度比较慢,有很大的提升空间,胜在模型兼容性好

2. pc端训练自己的数据,得到best.pt模型

用电脑摄像头进行测试

python detect.py --weights /Users/myself/dev/yolo/yolov5/hy-trained/best.pt --source 0 

测试模型效果OK. 

 

3. 输出tflite模型

 

python export.py --weights /Users/myself/dev/yolo/yolov5/hy-trained/best.pt   --include tflite  --img 416

注意, 例子的图片大小为416*416,所以需要把模型输出为416大小。 

再用pc调用进行模型测试

python detect.py --weights /Users/myself/dev/yolo/yolov5/hy-trained/best-fp16.tflite --source 0 --img 416

效果ok. 

4. 替换移动端文件,编译运行

上面训练得到的best-fp16.tflite, 替换到assets目录, 再把class.txt换成自己的label文件

编译运行即可。

issue:

改图片大小会闪退。

 

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海里的鱼2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值