浅聊矢量场 —— 4. 关于 Navier-Stokes方程的一些简单认识

Navier Stokes 方程,作为千禧年七大数学难题,以我的能力,顶多做到对它有一些浅薄的理解,谈不上有多深入的研究,文中如果有错,还望指出海涵。此外,现在的我没能力证明或者推导这个公式,有能力证明或推到公式的人属于有能力拿诺贝尔物理奖或菲尔兹奖的大拿,而且他不应该像我这么闲的有时间写博客才对。

1. 什么是 Navier-Stokes 方程?

Navier-Stokes 方程是用于描述流体运动的方程,可以看作是流体运动的牛顿第二定律 F = m a F = ma F=ma 的扩展。如果把流体的运动想象成由密度、体积都不可再分的无数个基本单元组成的「大集群」,那么就可以尝试通过对基本单元的运动进行分析求和后得到全部。

那么我们从第二定律出发,可以得到

∑ F = ∑ m a ⃗ = D ( m v ⃗ ) D t = m [ ∂ v ⃗ ∂ x ∂ x ∂ t + ∂ v ⃗ ∂ y ∂ y ∂ t + ∂ v ⃗ ∂ z ∂ z ∂ t ] \sum F = \sum m \vec a = \frac{D (m \vec v)}{D t} = m \left [ \frac{\partial \vec v}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial \vec v}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial \vec v}{\partial z} \frac{\partial z}{\partial t} \right ] F=ma =DtD(mv )=m[xv tx+yv ty+zv tz]

通过偏微分方程,我们知道要对流体的分析,可以转化为对流体的速度场的分析。并且可以通过分析其在时间、空间方面的变化得到最终的结果。所以,我们再来看 Navier Stokes 方程,能大概估摸出我们应该从哪些方面入手(也就是需要从空间、时间的连续变化关系),去理解它。

首先,它的基本式表达如下

ρ ( ∂ V ∂ t + V ⋅ ▽ V ) = − ▽ P + ρ g + ▽ T \rho \left ( \frac{\partial V}{\partial t} + V \cdot \triangledown V \right ) = - \triangledown P + \rho g + \triangledown \Tau ρ(tV+VV)=P+ρg+T

该方程是 Navier-Stokes 方程的基本形式,用于描述流体的运动。其中 ρ \rho ρ 是流体的密度, V V V 是流体的速度场, P P P 是流体的压强, g g g 是重力加速度, T \Tau T 是粘性力。这个方程的左侧描述了流体惯性力的变化,右侧则描述了压力、重力和粘性力对流体运动的影响。

∂ ρ ∂ t + ▽ ⋅ ( ρ V ) = 0 \frac{\partial \rho}{\partial t} + \triangledown \cdot (\rho V) = 0 tρ+(ρV)=0

而这个方程是连续性方程,用于描述流体的质量守恒。其中 ρ \rho ρ 是流体的密度, V V V 是流体的速度场。这个方程的左侧描述了流体的质量变化率,右侧描述了流体质量流入和流出的速率之和相等。这个方程保证了流体的质量守恒。

这里所包含的物理信息有:

  1. 流体物质密度 ρ \rho ρ
  2. 惯性力 ρ ( ∂ V ∂ t + V ⋅ ▽ V ) \rho \left ( \frac{\partial V}{\partial t} + V \cdot \triangledown V \right ) ρ(tV+VV)
  3. 压力 ▽ P \triangledown P P
  4. 外力 ρ g \rho g ρg
  5. 粘性力 μ ▽ 2 V \mu \triangledown^2 V μ2V

2. Navier-Stokes 方程的各个部分

2.1 流体物质密度

流体的物质密度 ρ \rho ρ 是指单位体积内的质量,可以看作是流体的密度。在 Navier-Stokes 方程中,它是一个关于时间和空间位置的函数。

2.2 惯性力

惯性力是指物体由于惯性而产生的力,也就是 F = m a F=ma F=ma 中的 m a ma ma。在 Navier-Stokes 方程中,惯性力是流体的速度场 V V V 在时间和空间上的变化导致的结果,可以写成 ρ ( ∂ V ∂ t + V ⋅ ▽ V ) \rho \left ( \frac{\partial V}{\partial t} + V \cdot \triangledown V \right ) ρ(tV+VV)

2.3 压力

压力是指流体由于内部分子作用而产生的力,是流体静力学性质的体现。在 Navier-Stokes 方程中,压力用 ▽ P \triangledown P P 表示。

2.4 外力

外力是指流体受到的来自外部的力,比如重力、浮力等。在 Navier-Stokes 方程中,外力可以写成 ρ g \rho g ρg,其中 g g g 是重力加速度。

2.5 粘性力

粘性力是指流体内部分子之间的相互作用力,可以看作是流体的黏性。在 Navier-Stokes 方程中,粘性力用 μ ▽ 2 V \mu \triangledown^2 V μ2V 表示,其中 μ \mu μ 是流体的动力黏度。

3. Navier-Stokes 方程的求解

Navier-Stokes 方程是一组偏微分方程,通常是非线性的,因此求解比较困难。在实际应用中,一般采用数值方法进行求解,比如有限元法、有限体积法等。这些方法将空间连续的流场离散化,转化为一个有限维的问题,然后用计算机进行求解。

对于 Navier-Stokes 方程的求解,一个非常重要的问题是如何处理流体的边界条件。不同的流体问题,边界条件会有很大的差异,因此需要针对具体的问题进行不同的处理。比如,对于一般的物体流动问题,可以采用无滑移条件和无渗透条件;对于湍流问题,需要采用某些统计方法来处理流体的边界条件。

4. Navier-Stokes 方程的应用

Navier-Stokes 方程可以应用于很多领域,比如流体力学、空气动力学、地球科学、天文学等。在工程领域中,Navier-Stokes 方程被广泛应用于流体动力学的计算和设计中,比如航空航天、汽车工业、船舶工业等。通过对流体的运动规律进行研究和分析,可以提高产品的性能和可靠性,降低成本和风险。

在自然科学领域中,Navier-Stokes 方程可以用来研究地球上大气和海洋的运动,比如海洋环流、大气环流等。通过对流体的运动规律进行模拟和预测,可以帮助人们更好地理解和预测自然现象,从而提高人类对自然环境的认知和保护。

此外,Navier-Stokes 方程还被广泛应用于数学领域中的偏微分方程研究,对于理论数学和数学物理的发展具有重要的意义。

5. Navier-Stokes 方程的未解问题

尽管 Navier-Stokes 方程被认为是描述流体运动的最基本方程之一,但是至今仍有很多未解的问题。其中最著名的就是 Navier-Stokes 方程的光滑性问题。

Navier-Stokes 方程的光滑性问题是指,是否存在一个光滑的解,能够满足 Navier-Stokes 方程和初始边界条件?这个问题已经被证明是一个千禧年七大数学难题之一,至今仍未解决。

另外,由于 Navier-Stokes 方程本身非常复杂,数值求解的误差也很容易积累,因此在实际应用中需要进行很多技术上的改进和优化。比如,采用高精度数值计算方法、优化网格布局、使用并行计算技术等。

6. 总结

Navier-Stokes 方程是描述流体运动的基本方程之一,包含了流体的运动、密度、压力、外力和粘性力等因素。它可以应用于很多领域,比如航空航天、汽车工业、自然科学等。

然而,由于 Navier-Stokes 方程本身非常复杂,数值求解的误差也很容易积累,因此在实际应用中需要进行很多技术上的改进和优化。此外,还存在一些未解的问题,需要更深入的研究和探索。

对于普通人来说,虽然可能不需要深入研究 Navier-Stokes 方程,但是了解它的基本原理和应用领域,可以帮助我们更好地理解自然现象和工程技术,从而提高对世界的认知和理解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值