1.概述
在近程应用中,AWR1642传感器配置为多模雷达,可以跟踪距离高达80米的目标,以及生成20米 内的丰富点云目标,可以同时探测到接近的车辆和更近的小目标。
1.1系统关键规划
SRR设计有两组规格,因为雷达被用作多模雷达。 第一种规格是用于近程雷达(SRR),其射程为80米。 第二个规格是超短程雷达(USRR),它的有效距离只有20米。
1.2 系统框图
SRR设计上位机(PC)与毫米波雷达(AWR1642,TI)交互的简易设计框图如下图所示;
2.SRR系统设计理论-chirp 配置
2.1 天线配置
SRR demo使用四个接收器和两个发射器配置两种不同的chirp。 第一种配置(SRR)使用简单的非多输入多输出(MIMO),只发送TX1。 第二种配置(USRR)使用时分复用MIMO配置(即分别在TX1和TX2上传输的帧中交替chirp)。 MIMO配置合成了8个虚拟RX天线阵列,如图下图2所示。 这种技术将角度分辨率提高了两倍(与单个TX配置相比)。
图2 MIMO 天线配置
2.2 chirp 配置和系统性能
为了实现可见范围约为80米、内存可用性为AWR1642的具体SRR用例,使用了表2中的chirp配置。
选择表2配置来实现表3所示的系统性能。 主要目标是实现最大距离约80米。 注意,频率斜率和最大距离的乘积受到可用中频带宽的限制(AWR1642为6.25 MHz)。 因此,最大85 m的距离将chirp的频率斜率锁定到约8 MHz/µs。
2.3 Profile 配置
为了满足USRR和SRR的使用需求,SRR demo使用了AWR1642设备的“高级框架配置”应用程序编程接口(API)。 这个API允许构造由多个子帧组成的帧,每个子帧被调优到特定的应用程序。 这种设计被称为多模雷达。 每个子帧都针对一个应用程序进行调优。 对于SRR配置,使用两个子帧。 一个子帧专用于USRR,另一个子帧专用于SRR。 帧配置使用'高级帧配置' API来生成两个独立的子帧:SRR子帧和USRR子帧(子帧以其基本设计要求命名)。 图3显示了框架配置。
图 3 帧配置
• SRR 子帧
这个子帧包含两种chirp(快chirp和慢chirp)。 快chirp和慢chirp的斜率相同; 然而,慢chirp比快chirp具有略高的“chirp重复周期”。 因此,与快chirp相比,慢chirp(经过二维快速傅里叶变换(FFT)处理)具有更低的最大无歧异速度。 注意,快chirp和慢chirp是不交替的; 相反,快速的chirp重复一定的次数,然后是慢chirp再重复相同的次数。
这种chirp设计的目的是使用“快chirp”和“慢chirp”对目标速度的两个单独估计,以及“中国余数定理”,以产生一个具有更高的最大速度极限的一致速度估计。
• USRR 子帧
这个子帧由两个交替的chirp组成。 每个chirp都利用了AWR1642设备上可用的两种Txs之一。 该子帧的组合处理允许生成一个由8个Rx天线组成的虚拟Rx阵列,从而具有比4个Rx天线阵列更好的角分辨率(约14.3°)。
2.4 数据处理路径(Data Path)
图4中的框图显示了对SRR应用程序的数据处理部分。
图 4 SRR Data Path or Processing Chain
图5显示了系统中chirp的时序和后续处理。
图 5 chirp的时序和后续处理。
射频前端由BSS (BIST子系统)进行配置。 从各种前端通道获取的原始数据由C67x DSP子系统(DSS)进行处理。
如图5所示,chirp期间的处理包括:
--C674x对每一个chirp(对应于发射天线上的chirp图)从ADC缓冲区的多个接收天线接收输入进行1D (range) FFT处理,并通过eDMA将转置输出转移到L3 RAM中 。
在射频电路的空闲或冷却期间的处理,在chirp之后直到下一个chirp周期,如图5帧间处理时间。 处理过程包括:
--由C674x执行的2D(速度)FFT处理,从L3 RAM的1D输出中获取输入,然后执行FFT,在L3 RAM中给出一个(范围,速度)矩阵。 该处理还包括多普勒方向的CFAR检测。 CFAR在距离方向的检测使用mmWave库。
--SRR子帧和USRR子帧的峰值分组(多普勒和距离)
--到达方向(方位角)估计,以映射目标的X-Y位置
--基于目标的信噪比和二维fft大小的附加修剪,避免地面杂波
--对SRR和USRR使用dBScan算法对检测到的对象进行聚类
--基于SRR扩展卡尔曼滤波器的聚类跟踪
聚类
使用dBscan算法对SRR和USRR子帧检测到的对象进行聚类。 聚类算法的输出是一个组的平均位置及其维数。对于USRR子帧,集群输出按原样发送到图形用户界面(GUI)。 USRR cluster允许将密集点云分组成矩形。 在交叉交通场景下,这些聚类可用于识别穿越雷达视场的车辆。对于SRR算法,聚类输出作为跟踪算法输入的基础。 将聚类中最强的对象作为跟踪算法的代表对象。 这里的意图本质上是减少提供给跟踪算法的对象数量,并引入迟滞,使跟踪器只跟踪强反射器,而不会在相邻反射器之间切换
跟踪
该跟踪器是一个相当标准的扩展卡尔曼滤波器(EKF有四个状态[x, y, vx, vv]和三个输入[r, v, sin(θ)]或距离,相对速度,和方位的sin)。 使用每个输入的相关信噪比(SNR)计算输入的相关方差。 利用频率方差的crmer - rao下界(CRLB)公式将信噪比转化为方差。 方差受各种输入的分辨率的限制。 虽然跟踪器对于EKF来说是相当标准的,但是跟踪器中有两个功能可以根据需求进行修改。 第一个是“轨道初始化函数”(initNewTracker),其中填充了轨道的初始参数。在SRR设计中,假设物体的速度只沿纵轴。 换句话说,假设一辆相对速度为v的车辆以vx = 0和vv = v的速度向雷达行驶,这在远程公路交通中很有效,但在交叉交通情况下效果不佳。第二个函数是“数据关联函数”(isTargetWithinDataAssociationThresh),它将新的测量值与现有轨迹关联起来。 关联本质上需要对场景中物体的运动进行假设,包括最大速度、运动方向、接近雷达时的加速度等。
结束语
这篇文章是接下来SRR案例的理论部分,接下来将开展SRR这个案例的代码讲解。