[Redis与AI结合:搭建智能电影推荐系统]

Redis与AI结合:搭建智能电影推荐系统

随着人工智能和大数据技术的发展,构建高效且智能的电影推荐系统变得越来越现实。在这篇文章中,我们将展示如何使用Redis作为向量存储,并与OpenAI的API结合,来创建一个自我查询的检索系统。本文将涉及一些Python代码示例,并讨论可能遇到的挑战和解决方案。

引言

Redis作为一种高性能的开源键值存储,被广泛用于缓存、消息代理和数据库等应用中。在最近的发展中,Redis也被用于向量存储,这使得它可以与AI算法结合,为复杂查询提供支持。本篇文章的目的是通过代码示例演示如何使用Redis和OpenAI API来创建一个智能的电影信息检索系统。

主要内容

创建Redis向量存储

首先,我们需要创建一个Redis向量存储,并填充一些数据。在这个例子中,我们使用了一组包含电影摘要的小型演示文档。

%pip install --upgrade --quiet redis redisvl langchain-openai tiktoken lark

为了使用OpenAIEmbeddings,我们需要获取OpenAI API Key。

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

接下来,我们将创建并初始化Redis向量存储。

from langchain_community.vectorstores import Redis
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()

# 创建文档数据
docs = [
    Document(
        page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
        metadata={
            "year": 1993,
            "rating": 7.7,
            "director": "Steven Spielberg",
            "genre": "science fiction",
        },
    ),
    # 其他文档省略
]

index_schema = {
    "tag": [{"name": "genre"}],
    "text": [{"name": "director"}],
    "numeric": [{"name": "year"}, {"name": "rating"}],
}

vectorstore = Redis.from_documents(
    docs,
    embeddings,
    redis_url="redis://localhost:6379",  # 使用API代理服务提高访问稳定性
    index_name="movie_reviews",
    index_schema=index_schema,
)

创建自我查询检索器

我们可以通过提供文档支持的元数据字段信息,实例化检索器。

from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
    AttributeInfo(
        name="genre",
        description="The genre of the movie",
        type="string or list[string]",
    ),
    # 其他字段信息省略
]

document_content_description = "Brief summary of a movie"

llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

测试检索器

我们可以通过不同的方式使用检索器,例如查询恐龙相关的电影,或查找评价高于8.4的电影。

retriever.invoke("What are some movies about dinosaurs")
retriever.invoke("I want to watch a movie rated higher than 8.4")

常见问题和解决方案

网络访问问题

由于某些地区的网络限制,访问OpenAI API可能会受到影响。开发者可以考虑使用API代理服务来提高访问的稳定性。

数据一致性

在创建索引架构时,请确保与文档中的元数据一致,否则可能会导致索引问题。

总结和进一步学习资源

使用Redis和OpenAI API构建智能的自我查询检索系统,可以显著提升数据检索的效率和智能化程度。若想深入了解,可以查阅以下资源:

参考资料

  1. Redis官方文档:Redis Documentation
  2. OpenAI API使用指南:OpenAI API Documentation
  3. LangChain官方文档:LangChain Documentation

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值