Redis与AI结合:搭建智能电影推荐系统
随着人工智能和大数据技术的发展,构建高效且智能的电影推荐系统变得越来越现实。在这篇文章中,我们将展示如何使用Redis作为向量存储,并与OpenAI的API结合,来创建一个自我查询的检索系统。本文将涉及一些Python代码示例,并讨论可能遇到的挑战和解决方案。
引言
Redis作为一种高性能的开源键值存储,被广泛用于缓存、消息代理和数据库等应用中。在最近的发展中,Redis也被用于向量存储,这使得它可以与AI算法结合,为复杂查询提供支持。本篇文章的目的是通过代码示例演示如何使用Redis和OpenAI API来创建一个智能的电影信息检索系统。
主要内容
创建Redis向量存储
首先,我们需要创建一个Redis向量存储,并填充一些数据。在这个例子中,我们使用了一组包含电影摘要的小型演示文档。
%pip install --upgrade --quiet redis redisvl langchain-openai tiktoken lark
为了使用OpenAIEmbeddings,我们需要获取OpenAI API Key。
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
接下来,我们将创建并初始化Redis向量存储。
from langchain_community.vectorstores import Redis
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
# 创建文档数据
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={
"year": 1993,
"rating": 7.7,
"director": "Steven Spielberg",
"genre": "science fiction",
},
),
# 其他文档省略
]
index_schema = {
"tag": [{"name": "genre"}],
"text": [{"name": "director"}],
"numeric": [{"name": "year"}, {"name": "rating"}],
}
vectorstore = Redis.from_documents(
docs,
embeddings,
redis_url="redis://localhost:6379", # 使用API代理服务提高访问稳定性
index_name="movie_reviews",
index_schema=index_schema,
)
创建自我查询检索器
我们可以通过提供文档支持的元数据字段信息,实例化检索器。
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
# 其他字段信息省略
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
测试检索器
我们可以通过不同的方式使用检索器,例如查询恐龙相关的电影,或查找评价高于8.4的电影。
retriever.invoke("What are some movies about dinosaurs")
retriever.invoke("I want to watch a movie rated higher than 8.4")
常见问题和解决方案
网络访问问题
由于某些地区的网络限制,访问OpenAI API可能会受到影响。开发者可以考虑使用API代理服务来提高访问的稳定性。
数据一致性
在创建索引架构时,请确保与文档中的元数据一致,否则可能会导致索引问题。
总结和进一步学习资源
使用Redis和OpenAI API构建智能的自我查询检索系统,可以显著提升数据检索的效率和智能化程度。若想深入了解,可以查阅以下资源:
参考资料
- Redis官方文档:Redis Documentation
- OpenAI API使用指南:OpenAI API Documentation
- LangChain官方文档:LangChain Documentation
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—