初学算法——逻辑回归(Logistic Regression)算法

这篇博客介绍了如何利用逻辑回归算法解决多于两个类别的分类问题。通过集训集拟合参数,确定分类边界,并用梯度下降法求解方程。文章还讨论了特征缩放和均值归一化在加速收敛中的作用。核心策略是将多分类问题转化为二分类问题,通过多次划分完成所有类别的学习。
摘要由CSDN通过智能技术生成

 

 

 

用集训集拟合参数θ,确定θ后,边界也就确定了

 

将逻辑回归函数整理成一个等式

用梯度下降法求解逻辑回归方程推导

这样,直接讲的特征缩放法和均值归一化就都能用到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值