B - 反正切函数的应用解题报告

B - 反正切函数的应用
Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

Description

反正切函数可展开成无穷级数,有如下公式 

(其中0 <= x <= 1) 公式(1) 

使用反正切函数计算PI是一种常用的方法。例如,最简单的计算PI的方法: 

PI=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...) 公式(2) 

然而,这种方法的效率很低,但我们可以根据角度和的正切函数公式: 

tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)] 公式(3) 

通过简单的变换得到: 

arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4) 

利用这个公式,令p=1/2,q=1/3,则(p+q)/(1-pq)=1,有 

arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1) 

使用1/2和1/3的反正切来计算arctan(1),速度就快多了。 
我们将公式(4)写成如下形式 

arctan(1/a)=arctan(1/b)+arctan(1/c) 

其中a,b和c均为正整数。 

我们的问题是:对于每一个给定的a(1 <= a <= 60000),求b+c的值。我们保证对于任意的a都存在整数解。如果有多个解,要求你给出b+c最小的解。 

Input

输入文件中只有一个正整数a,其中 1 <= a <= 60000。

Output

输出文件中只有一个整数,为 b+c 的值。

Sample Input

1

Sample Output

5

这个真不知道说什么好:

#include <iostream>   

using namespace std;   

int main()   

{   

    long long a,m;   

     cin>>a;   

    for(m=a;m>=1;m--)   

        if((a*a+1)%m==0){   

             cout<<a+a+m+(a*a+1)/m<<endl;   

            return 0;   

         }   

}  





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值