在AIGC时代,需要注意的事项有很多。AIGC(Artificial Intelligence Generative Content,即人工智能生成内容)正在重新塑造内容创作生态,涉及文字、图像、视频、音频等多种形式的内容。以下是需要重点关注和了解的几个方面:
1. 理解基本原理
神经网络:神经网络是一种模拟人脑神经元连接的算法模型,它通过节点和链接传递和处理信息。
深度学习:深度学习则是一个更加“聪明”的大脑,其神经元被组织成多层,每一层都在处理数据的不同特征或部分,这使得深度学习能够处理非常复杂的问题。
生成式对抗网络 (GAN):GAN是推动AIGC热潮的关键技术,它由一个生成器和一个判别器组成,通过不断的对抗,AI学会了如何创作逼真的作品。
2. 掌握大模型
预训练模型:预训练模型可以理解为机器通过学习和训练获取知识和技能,以完成各种任务。例如,GPT是一种大型语言模型,可以自动生成各类文本。这种模型的应用非常广泛,如智能语音助手和图像识别软件。
应用开发:OpenAI开发的ChatGPT就是典型的预训练语言模型,它不仅可以回答问题,还能进行深入讨论,就像一个会聊天的机器人。
3. 开源合作
共享协作:开源是指项目的源代码公开,任何人都可以查看、修改和分享。这种方式鼓励了广泛的分享和合作,推动了技术的快速发展。
工具软件:在计算机编程中,开源项目意味着其源代码公开,任何人都可以参与其中,例如知名的开源工具和软件。
4. 语言处理
NLP技术:自然语言处理是教计算机理解和使用人类语言的一种技术。例如,当你对手机说:“打开天气应用,查看明天的天气”,这就涉及到了自然语言处理。自然语言处理技术需要用到很多开源的工具和软件,这些工具帮助研究人员处理语言数据,大大降低了开发的门槛。
5. **注重内容质量
内容可控性:在应用大模型AIGC进行内容创作时,由于基于生成式原理,有时会出现“幻象”,即胡编乱造的内容。在一些要求严谨的场景下(如医疗、政务),这种可控性问题会造成灾难性的后果。
内容可解释性:可解释性缺失会导致内容可信度丧失。在任何领域,内容都需要具备可溯源的证据链,而不是无法解释的结果。
6. 多模态融合
多模态跨模态问题:许多实际应用场景都是多模态和跨模态的。综合多种模态表征同一事物往往更加准确。对于大模型而言,解决多模态跨模态的问题至关重要。
7. 职业人才培养
紧缺人才类型:AIGC时代最紧缺的人才包括懂算法模型的工程师、产品经理和跨领域解决方案专家。这些人才需要既了解行业,又掌握基础技术,能够提出有效的解决方案。
人才培养转型:非研发类背景的文科生、商科生也可以转型AIGC领域,他们的优势在于了解用户和市场,适合做产品经理和解决方案架构师。互联网人才同样可以转行AIGC,只需熟悉技术特点和行业特点即可。
综上所述,在AIGC时代,需要关注和理解其基本原理、大模型、开源合作方式以及自然语言处理技术。同时,要特别注重内容的可控性和可解释性,并解决多模态融合问题。对于职业发展和人才培养,应积极培养和吸引不同领域的优秀人才,鼓励跨领域合作和学习。