线性代数---第三章向量

本文详细探讨了线性代数中关于向量和矩阵秩的概念,包括线性表出、线性相关与无关的判断、矩阵秩的计算以及行列式的性质。重点讲解了如何通过化简为阶梯型矩阵来确定极大线性无关组,并讨论了矩阵乘积秩的性质和施密特正交化等核心概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1方程组有解就是可以线性表出,方程组无解就是不能线性表出

在这里插入图片描述

2有时方程组就是无法化简到左侧只有一个系数,这时候就要讨论内部参数了

在这里插入图片描述

3线性相关就是有非零解,就是r(A)<n,就是行列式等于0

在这里插入图片描述

4原来秩r(A)<n中的n指的是系数最大值,r(A)指的则是有多大的n阶方阵。比如这个2,有3个系数,所以n是3,但是只有两行三列,所以r(A)是2,2<3,所以是线性相关

在这里插入图片描述

5原来r(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值