目标检测:3采用YOLOv8 API训练自己的模型

本文介绍了如何使用YOLOv8 API进行目标检测模型的训练,包括YOLOv8的新特性,安装步骤,训练模型,验证和测试过程。在训练集较小的情况下,尽管验证和测试结果可能不尽如人意,但文章详细阐述了训练过程中的常见问题和解决方案。
摘要由CSDN通过智能技术生成

目录

​1.YOLOv8 的新特性

2.如何使用 YOLOv8?

3使用YOLOv8训练模型

4.验证训练集

5.测试训练集

6.测验其他图片

7 其他问题

参考:


1.YOLOv8 的新特性


Ultralytics 为 YOLO 模型发布了一个全新的存储库。它被构建为 用于训练对象检测、实例分割和图像分类模型的统一框架。

2.如何使用 YOLOv8?

要充分发挥 YOLOv8 的潜力,需要从存储库和ultralytics包中安装要求。

要安装要求,我们首先需要克隆存储库。

git clone https://github.com/ultralytics/ultralytics.git

接下来,安装requirements

matplotlib>=3.3.0
    numpy>=1.22.2
    opencv-python>=4.6.0
    pillow>=7.1.2
    pyyaml>=5.3.1
    requests>=2.23.0
    scipy>=1.4.1
    torch>=1.8.0
    torchvision>=0.9.0
    tqdm>=4.64.0"
    psutil
    py-cpuinfo
    thop>=0.1.1
    pandas>=1.1.4
    seaborn>=0.11.0"


pip install -r requirements.txt

在最新版本中,Ultralytics YOLOv8 提供了完整的命令行界面 (CLI) API 和 Python SDK,用于执行训练、验证和推理。

如果要使用yoloCLI,需要安装ultralytics包。

pip install  ultralytics

3使用YOLOv8训练模型

进入代码目录cd ultralytics。

创建目录test_train,和文件helmat.yaml。 dataset是上篇文章创建的安全帽数据集,上次训练的数据集只有10张图像。helmat.yaml中设置nc为1.

root@1c6af8fdd164:~/ultralytics/test_train# ls
dataset  helmat.yaml

回到ultralytics目录,创建train.py

root@1c6af8fdd164:~/ultralytics# cat train.py 
from ultralytics import YOLO 

model = YOLO('./test_train/helmat.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

model.train(mode='train', data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值