目录
1.YOLOv8 的新特性
Ultralytics 为 YOLO 模型发布了一个全新的存储库。它被构建为 用于训练对象检测、实例分割和图像分类模型的统一框架。
2.如何使用 YOLOv8?
要充分发挥 YOLOv8 的潜力,需要从存储库和ultralytics
包中安装要求。
要安装要求,我们首先需要克隆存储库。
git clone https://github.com/ultralytics/ultralytics.git
接下来,安装requirements
matplotlib>=3.3.0
numpy>=1.22.2
opencv-python>=4.6.0
pillow>=7.1.2
pyyaml>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.8.0
torchvision>=0.9.0
tqdm>=4.64.0"
psutil
py-cpuinfo
thop>=0.1.1
pandas>=1.1.4
seaborn>=0.11.0"
pip install -r requirements.txt
在最新版本中,Ultralytics YOLOv8 提供了完整的命令行界面 (CLI) API 和 Python SDK,用于执行训练、验证和推理。
如果要使用yolo
CLI,需要安装ultralytics
包。
pip install ultralytics
3使用YOLOv8训练模型
进入代码目录cd ultralytics。
创建目录test_train,和文件helmat.yaml。 dataset是上篇文章创建的安全帽数据集,上次训练的数据集只有10张图像。helmat.yaml中设置nc为1.
root@1c6af8fdd164:~/ultralytics/test_train# ls
dataset helmat.yaml
回到ultralytics目录,创建train.py
root@1c6af8fdd164:~/ultralytics# cat train.py
from ultralytics import YOLO
model = YOLO('./test_train/helmat.yaml').load('yolov8n.pt') # build from YAML and transfer weights
model.train(mode='train', data