#与君共勉:
那些你荒废的时光,终究一天会以一种陨石撞击地球的猛烈闯入你的生活,而你所能做的,也只是悲当以歌
——Proton
若你看到上面的话,不要为Proton的身份而吃惊,因为这是渺小如质子的我,并且请你原谅我一个工科生说的一些不够成熟的话,因为这是它内心无法抑制的独白。
#DFT存在的问题
##纵坐标与横坐标
纵坐标代表了傅里叶变换各个谐波信号的幅度值
横坐标代表了各个谐波信号的频率
##N
FFT变换要求N为2的整数次幂,不满足的情况下补零。
同样是单一频率的正弦波,不同的N, 直接用DFT进行频谱分析的结果却大不一样。
对一个连续时间信号进行采样,对信号的有限长样点进行DFT的结果,并不总是和该信号在连续时间域的频谱一致,似乎只要是有限长采样中包含了整数个周期的信号样点,DFT的结果就和连续域频谱非常一致。
##栅栏效应和补零
在DFT变换计算过程中,如果序列长度为N个点,则只要计算N点DFT。这意味着对序x(n)的傅里叶变换在(0,2pi)区间只计算N个点的值,其频率采样间隔为2pi/N。就好像通过一个栅栏看信号频谱,只能在离散电上看到信号频谱,这种现象被称作栅栏效应。
如果序列长度较小,采样间隔Ws=2pi/N(归一化的数字频率)可能太大,以至于不能直观的说明信号的频谱特性。这时,采用在数字序列后补加L-N个0的方法,对L点多DFT变换,以满足所需的采样间隔。这样做可以在保证频谱形状不变的情况下,使谱线加密。即使频域采样点数增加,从而使原来看不到的频谱分量可以看到。但是补零得到的频谱不是我们需要的频谱。
DFT的补零并没有增加序列的有效长度,所以并不能提高分辨率:但补零可以使数据N为2的整数次幂,以便于使用接下来介绍的快速傅里叶算法。补零对原X(K)起到插值作用,一方面克服栅栏效应。另一方面,由于数据截短时引起的频谱泄露,有可能在频谱中出现一些难以确认的谱峰,补零有可能消除这种现象。
##频谱泄露和混叠失真
对信号进行DFT计算,首先必须使其变成时宽有限的信号,方法是将序列x(n)与时宽有限的窗函数w(n)相乘。例如,选用矩形窗函数来截断信号,在频域中则相当于信号的频谱与窗函数的频谱的周期卷积。卷积将造成频谱失真,且这种失真主要是表现在原频谱的扩宽,这个现象被称为频谱泄露。因为频谱泄露将导致频谱扩展,从未使信号最高频率超过采样率的一半,造成混叠失真。
##频谱分辨率与DFT参数的选择
在对信号进行DFT变换时,分析信号的频谱特征时,通常采用频率分辨率来表征在频率轴上所能得到的最小频率间隔。对应长度为N的DFT变换,其频率分辨率△f=fs/N,其中fs为时域信号的采样频率。需要注意的是,这里的数据长度N必须是数据的有效长度。如果在x(n)中有两个频率分别为f1、f2的信号,则在对x(n)用矩形窗截断时,要分辨两个频率,必须满足2fs<|f1-f2|
关于傅里叶变换的一点体会
最新推荐文章于 2024-09-01 17:40:57 发布