一、几何光学基本定律
1、光的直线传播定律:在各向同性的均匀介质中,光是沿直线传播的。
(补充说明:当光传播遇到波长量级的障碍物(如小孔或狭缝)时,会发“衍射”现象)
2、光的独立传播定律:不同光源发出的光,在空间某点相遇时,彼此互不影响,各光束独立传播。
(补充说明:当两束光由同一单色点光源发出、经不同路径传播后在空间某点相遇时,会发生“干涉”现象)
3、反射定律:反射光线位于由入射光线和分界面上入射点的法线所决定的平面内;反射光线和入射光线位于法线的两侧,且反射角和入射角的绝对值相等、符号相反,即。
4、折射定律:折射光线位于由入射光线和分界面上入射点的法线所决定的平面内;入射角的正弦与折射角的正弦之比和入射角的大小无关,只与两种介质的折射率有关。折射定律可表示为:。
(补充说明:通常情况下,光入射到两种均匀介质分界面上时,会同时出现反射现象和折射现象)
入射角、折射角:入射光线、折射光线与法线的夹角。
5、光的全反射性质:光从光密介质入射到光疏介质,并且入射角大于临界角时,入射到介质分界面上的光线全部反射回原来介质中的现象。
6、折射率:电磁波在真空中的速度与在介质中的速度之比。公式:。
7、费马原理:光从一点传播到另一点,其间无论进行了多少次反射和折射,其光程为极值(极大值、极小值或常数)。光是沿着光程取极值的路径传播的。
8、马吕斯定律:光线在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程为定值。
二、成像的基本概念与完善成像条件
1、完善像点:若一个物点对应的一束同心光束,经光学系统后仍然为同心光束,该光束的中心即为该物点的完善像点。
2、完善像:物体上每个点经光学系统后所成完善像点的集合就是该物体经光学系统后的完善像。
3、物空间:物所在的空间。
4、像空间:像所在的空间。
(补充说明:物像空间的范围均为)
5、光学系统成完善像的三个等价条件(满足其一):
①入射光波是球面波时,出射波面也是球面波;
②入射光是同心光束时,出射光也是同心光束;
③物点及其像点之间任意两条光路的光程差相等。
三、几何光学中的符号规则
1、符号规则(人为规定,保持一致性):
①光线的传播方向由左向右。沿轴线段以折射面顶点为原点度量,若与光线的传播方向相同,其值为正,反之为负;
②垂轴光线:以光轴为基准,在光轴以上为正,光轴以下为负;
③光线与光轴的夹角:用由光轴转向光线形成的锐角度量,顺时针为正,逆时针为负;
④光线与法线的夹角:用由光线转向法线形成的锐角度量,顺时针为正,逆时针为负;
⑤光轴与法线的夹角:用由光轴转向法线形成的锐角度量,顺时针为正,逆时针为负;
⑥折射面间隔从前一面的顶点到后一面的顶点,与光线的传播方向相同,其值为正,反之为负。
四、单个折射球面的光线光路计算
折射球面曲率半径为,介质折射率分别为
和
,若已知光线物方坐标L和U,推导可得
表明:对于确定的一个轴上物点(L不变)以不同宽度的成像光束成像时(U值不同),所得像点的位置不同。
对近轴光线:
表明:在近轴区,对于确定的物点存在唯一的一个像点与之对应,由此可以确定物像共轭位置关系。
五、单个折射(反射)球面的成像
为讨论单个折射球面成像的大小、倒正和虚实,引入垂轴放大率、轴向放大率和角放大率的概念。
名称 | 定义 | 计算公式 | 物理意义 |
---|---|---|---|
垂轴放大率 | 像的大小与物的大小之比 | 可以确定物体的成像性质,即像的正倒、虚实、放大与缩小: 1. 2. 3. | |
轴向放大率 | 轴上物点沿光轴做微小移动时,所引起的共轭像点移动量 | | 折射球面的轴向放大率恒为正,表明当物点沿轴移动时,其像点沿光轴同向移动; 通常 |
角放大率 | 近轴区一对共轭光线,它们与光轴的夹角 | 表示折射球面有将光束变宽或变窄的能力。 它只与共轭点的位置有关,而与光线的孔径角无关。 | |
三种放大率之间的关系 |
将代入单个折射球面成像和放大率公式,可得相应的反射球面公式
和
拉赫不变量J
表征光学系统性能的一个重要参数。
该式表明:实际光学系统在近轴区成像时,在物像共轭面内,物体大小y,成像光束的孔径角u和物体所在介质的折射率n的乘积是一个常数。
六、共轴球面系统的成像
系统的成像放大率为各面放大率的乘积,即: