Merck如何利用生物学基础模型改进药物设计

Merck如何利用生物学基础模型改进药物设计

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Amazon Web Services Health Omics, ]

导读

在本次会议中,了解Merck如何通过整合生物学基础模型来现代化其药物发现过程。Merck分享了公司如何使用Amazon HealthOmics来现代化其生成生物学推理栈的第一手经验,这有助于他们扩展规模并获得新的见解。

演讲精华

以下是小编为您整理的本次演讲的精华。

在2024年亚马逊云科技 re:Invent大会上,亚马逊云科技健康AI组织的主要产品经理Aaron Friedman发表了一场精彩的演讲,阐述了领先的制药公司默克如何利用最先进的生物基础模型来增强和加速其药物发现过程。与Aaron一同出席的还有默克公司研发IT副总裁Matt Studney和默克团队成员Danny Bitten,他们分享了与亚马逊云科技合作取得的科学成果。

Aaron首先强调了过去几十年来计算方法在促进药物发现方面发挥的关键作用,这一点已经得到了两次诺贝尔奖的认可。2013年,Martin Karplus及其团队在基于物理的模拟方面做出了开创性贡献;而2022年,AlphaFold 2和由David Baker领导的华盛顿大学研究小组在蛋白质预测和生成方面取得了突破性成就。

计算方法的整合使研究人员能够以前所未有的速度生成更多数据点,从而突破了阻碍进展的瓶颈。这种新的能力使科学家们能够测试在传统的实验室环境中可能不切实际或不可能探索的假设。Aaron强调了计算在这一领域的深远影响,并预测其影响力将继续增长,塑造药物发现的未来。

Aaron接着阐述了生成式AI在生命科学研究中的革命性潜力,强调了基于AI的应用程序有望增强药物设计、生物标记物发现、靶点评估以及药物开发管线的其他关键方面。他介绍了从基于RNA和DNA的算法到蛋白质模型,再到评估特定性质(如免疫原性)和促进新抗体设计的专门算法等各种不同模型的兴起。

在蛋白质设计和发现领域,Aaron强调组织需要大规模严格测试和运行这些模型、精确跟踪谱系、无缝切换模型,并批判性地评估不同科学配方的有效性。正是在这一背景下,他介绍了亚马逊云科技开发的一项尖端服务亚马逊云科技 Health Omics,旨在直接解决这些挑战。

Aaron解释说,亚马逊云科技 Health Omics的设计目的是简化将模型容器化的过程、管理编排、处理故障和重试,并最终通过单一API调用实现推理。这种创新方法旨在减轻复杂基础设施管理的负担,让研究人员能够专注于推动创新的核心科学工作。

接下来,Aaron将演讲转交给默克公司的Matt Studney,后者分享了默克与亚马逊云科技长期合作伙伴关系的宝贵见解。Matt强调默克从基础设施导向的方法转向利用亚马逊云科技能力来发掘新见解并加速药物发现过程。他着重强调亚马逊云科技服务与默克科学工作流程无缝集成的至关重要性,并强调了双方关系的协作性质。

随后,默克团队的Danny Bitten登场,着重介绍了亚马逊云科技 Omics服务所带来的变革性科学成果。Danny首先阐明了蛋白质在细胞功能中的关键作用,以及它们作为药物和疫苗靶点的重要性。他强调了默克在设计针对蛋白质的药物方面的不懈努力,包括小分子、抗体和酶。

Danny随后深入探讨了AI和机器学习方法的最新突破性进展,如AlphaFold、RosettaFold和EssenFold,这些方法通过直接从序列预测蛋白质的3D结构,彻底改变了这一领域。他还阐述了蛋白质语言模型和扩散模型的发展,这些模型开辟了生成不存在于自然界中的新蛋白质设计的新途径,就像OpenAI的DALL-E工具能够从文本提示生成AI生成的图像一样。

在合作的见证下,默克与亚马逊云科技 Omics团队合作,将这些尖端方法整合到一个综合的生成式AI管线中。这一管线使默克的科学家能够输入感兴趣的结构,并仅通过点击一个按钮就能生成数以千计的设计,规模前所未有。Danny提供了令人信服的例子,说明了如何利用这一管线创建新疫苗、酶、肽和用于治疗或诊断应用的蛋白质结合剂。

Danny阐述了蛋白质语言模型与文本语言模型之间的基本相似之处和差异。虽然语言模型是在大量文本语料库上训练以根据上下文预测单词,但蛋白质语言模型则是在大量蛋白质序列数据库上训练以预测给定上下文中的相关氨基酸。

在生成式AI领域,Danny强调了使用GPT类模型(如Salesforce的ProtGen2)的做法,这些模型可以进行微调以生成新的蛋白质设计。这个过程包括对相关序列进行标记化、微调模型以预测下一个标记,然后利用该标记作为提示生成新的设计。

Danny还阐述了默克在抗体发现领域的创新方法,这一领域传统上依赖于将靶蛋白注射到动物体内并进行大量结合测定和实验的繁琐且耗时的过程。默克的解决方案是开发了世界上第一个抗体语言模型平台,该平台指导抗体工程决策并实现了大规模人源化。这项突破性方法利用了一个包含4000万条人类序列的公共数据库,允许用户输入非人源抗体序列,并通过一个直观的用户界面获得人源化的主导候选物。

在靶点设计和酶多样化方面,Danny介绍了AutoBahn,这是一个类似于蛋白质计算机辅助设计工具的协作蛋白质注释和设计平台。该平台整合了多个内部和外部来源,包括蛋白质语言模型和AlphaFold,使科学家能够设计带有特定标签、连接子和修饰的蛋白质,以促进纯化和下游测定。

Danny强调的一个令人信服的用例是优化连接子序列以提高纯化后的蛋白质产量。通过利用分子动力学模拟(模拟原子和分子之间随时间的相互作用),默克可以评估不同连接子设计的稳定性,并确定最稳定的选项,从而提高后续测定的蛋白质产量。

Danny还讨论了生物催化的应用,这是一种利用重新设计的酶在工业条件下催化反应的绿色化学方法,从而减少药物制造过程中的步骤和成本。默克的方法是通过诱变创建酶变体库,在细菌中表达它们,并测试其活性。机器学习模型和分子动力学模拟被整合到AutoBahn中,以改善有益突变的选择和模拟酶-底物相互作用。

此外,Danny强调了在蛋白质中鉴定隐蔽口袋的重要性,这些口袋通常不易被药物结合。通过利用分子动力学模拟来模拟溶液中蛋白质的动态,默克可以发现瞬时口袋并设计药物来靶向它们。鉴于这项任务的计算复杂性,默克采用了在分子动力学模拟投影上训练机器学习模型以有效预测这些隐蔽口袋的策略。

在整个演讲过程中,Danny强调了这些过程中固有的计算挑战,以及亚马逊云科技 Omics服务如何使默克能够简化工作流程、扩展计算资源并大幅减少计算时间,从而加速其药物设计工作。

最后,Aaron强调了2024年re:Invent大会上与亚马逊云科技医疗保健和生命科学、基础模型等相关的即将举行的会议和研讨会,并鼓励与会者探索这些资源,深入了解正在塑造药物发现未来的尖端技术。

这段视频展示了默克作为一家领先的制药公司,如何处于利用最先进的生物基础模型和亚马逊云科技 Omics服务来彻底改革药物发现过程的前沿。从靶点鉴定到主导化合物优化,默克与亚马逊云科技的合作使其能够实现可扩展的计算、高效的工作流程以及各种AI和机器学习技术的无缝集成,使公司成为追求新型疗法和改善人类健康的先驱。

下面是一些演讲现场的精彩瞬间:

Aaron Friedman是亚马逊云科技健康人工智能组织的主要产品经理,他介绍了自己和同事Matt和Danny,为一场与他作为计算化学家密切相关的演讲做了铺垫。

43239dc3eb26f0a1a4102259750967ad.png

在亚马逊云科技,我们通过提供强大的计算资源和工具,帮助研究人员设计新型疗法、优化先导化合物,从而最终改善人类健康,实现科学突破。

c293ca37a2b6a8337bf817c6a6ab9c79.png

亚马逊推出了科学配方和工具,帮助客户快速启动并扩大使用人工智能进行蛋白质设计的工作。

42e8e6b5fdf1f88bbfadc40c2fa632ec.png

亚马逊云科技通过允许组织共享工作流程并在自己的数据上运行科学配方,实现了安全协作,而无需向合作伙伴公开数据。

a4201a9eee6a8d1457e37adff6f2c5c3.png

AlphaFold、RosettaFold和EssenFold等计算管道和人工智能模型彻底改变了蛋白质结构预测和设计,使得在计算机上生成数千种新的蛋白质设计成为可能。

d268dfeb3989ebf3a9a1362a3a222fea.png

亚马逊利用生物催化、机器学习和分子动力学模拟的力量,正在为可持续发展革新酶工程。

66d62f69937108c3f5b9d4f58216313a.png

Dan Sheeran邀请与会者通过洞见性的白板讲座和研讨会,探索亚马逊云科技创新产品,包括基础模型、医疗保健和生命科学解决方案,在reInvent2024大会上。

32bb0fc4774e5e6acca8e4c0a49c67ed.png

总结

在这个引人入胜的叙述中,我们探索了默克公司利用生物基础模型(BioFMs)来革新药物发现的开拓性旅程。Aaron Friedman作为亚马逊云科技的主要产品经理,通过强调计算在增强药物研究方面的变革力量,为我们拉开了序幕,这导致了AlphaFold 2和David Baker小组的突破性进展。

Matt Studney作为默克公司研发IT副总裁,带领我们走进了幕后,揭示了公司与亚马逊云科技十年合作关系的演变,从基础设施管理到通过亚马逊云科技 Health Omics等服务释放前所未有的能力。这种合作使默克能够重构应用程序,将数据和计算资源迁移到云端,并利用BioFMs的潜力获得以前无法获得的见解。

Danny Bitten作为Matt团队的成员,随后揭示了他们与亚马逊云科技合作的科学成果。他展示了亚马逊云科技 Omics如何简化和民主化工作流程,使默克能够扩展计算资源并加速药物设计过程。从抗体发现和人源化到酶工程和识别隐蔽的药物靶点,默克创新的方法得到了BioFMs和分子动力学模拟的支持,为更高效和更经济的药物开发铺平了道路。

在叙述结束时,Aaron Friedman邀请与会者探索re:Invent提供的丰富会议和资源,承诺计算与生命科学的融合将继续塑造药物发现的格局并改善人类健康。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值