(1)在实际应用中,我们会遇到多个输入、一个输出的分类问题,如下图所示糖尿病数据集,x1~x8表示糖尿病的相关指标,Y表示第二年患糖尿病的概率。
(2)为了处理多维特征的输入,我们需要用多维度的Logistic回归模型,解决的也是二分类问题
(3)mini-batch:一次运行一个mini-batch,更新一次梯度
(4)数据集为上述糖尿病数据集。按照神经网络的思想,可以将8维的输入变为6维的输出,6维的输入变为4维的输出,4维的输入变为1维的输出,模型定义如下:
(5)损失函数使用解决二分类问题的交叉熵损失函数,优化器使用SGD随机梯度下降更新权重
(6)代码实现:
import torch
import numpy as np
#delimiter分隔符
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
#最后一列不要
x_data = torch.from_numpy(xy[:,:-1])
#只要最后一列,加[]保证是矩阵,不是向量
y_data = torch.from_numpy(xy[:, [-1]])
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
# 这个模块中没有参数,不需要训练
self.sigmoid = torch.nn.Sigmoid()
#self.activate = torch.nn.RuLU()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
# x = self.activate(self.linear1(x))
# x = self.activate(self.linear2(x))
# x = self.activate(self.linear3(x))
return x
model = Model()
#二分类损失函数
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(100):
#Forward
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
#Backward
optimizer.zero_grad()
loss.backward()
#Update
optimizer.step()
结果输出:
(7)可选用其他激活函数测试