卷积神经网络和误差反向传播如何一起工作

用更简单的方式来理解卷积神经网络(CNN)和误差反向传播法(一种梯度下降的应用方式)是如何一起工作的,这次我们用一个找宝藏的游戏来比喻:

游戏背景:寻宝图的秘密

想象你有一张藏宝图,但地图是模糊的,只能大致指出宝藏在一片大森林的某个位置。你的任务是找到确切的宝藏地点。这片森林就像是一堆手写数字图片(比如识别数字“5”),而宝藏就是正确识别出这些数字的能力。

你的工具:卷积神经网络(CNN)

你有一个特殊的望远镜(CNN),它有几层特殊的眼镜片(卷积层、池化层、全连接层)。每层眼镜片都能帮你看到森林中不同的细节,比如树木的形状、地面的质地,帮助你一步步缩小宝藏的可能位置。

开始探索:前向传播

  1. 第一层眼镜(卷积层):像一个有洞的模板,放在森林照片上滑动,每次都能捕捉到一些特定形状(边缘、曲线),这些形状有助于识别数字。
  2. 第二层眼镜(池化层):帮助你忽略一些不重要的细节,专注于最重要的线索,比如只看最粗的树干,这样移动更快。
  3. 更多眼镜:经过多层这样的观察和筛选,你得到了一些关键特征的集合。
  4. 最后的推理(全连接层+输出层):基于收集到的所有线索,你的大脑(输出层)猜测宝藏最可能的位置,并给出一个概率列表,比如认为“5”的可能性是80%,“3”的可能性是15%,其他的是5%。

发现偏差:计算损失

你发现自己的猜测并不总是准确,比如有时候你会误以为“3”是“5”。这时,你需要知道你的猜测离正确答案有多远,这就是损失函数,告诉你猜错的程度。

调整眼镜:误差反向传播+梯度下降

  1. 找问题所在:当发现猜错了,你开始回顾每一步,看看是不是哪一层的眼镜出了问题。这就像误差反向传播,从最终的错误(猜错的数字)开始,一步步倒推,找出是哪些眼镜片的视角需要调整。

  2. 微调眼镜:知道了哪层眼镜需要改进后,你开始微调它们的角度或透明度,让下次看得更清楚。这就是梯度下降,它告诉你调整的方向和幅度,以便下次更接近正确答案。

  3. 重复游戏:你不断地用这套方法探索,每次调整一点点,慢慢地,你的望远镜(CNN)越来越精准,直到几乎每次都能准确找到宝藏(正确识别数字)。

通过这个过程,CNN学会了识别手写数字,而误差反向传播和梯度下降则是帮助它不断自我改进,提高识别准确性的秘密武器。

当然,让我们在保持通俗易懂的基础上,加入一些基本的计算概念,以便更好地理解卷积神经网络(CNN)和误差反向传播法的工作原理。

具体数学过程

1. 权重调整的数学苗头

在我们的寻宝游戏中,调整眼镜实际上意味着调整网络中的权重(相当于调整眼镜的透明度和角度)。每个权重都关联着一个小小的“影响力”,告诉网络某部分输入信息有多重要。

2. 前向传播的简易计算

假设在某一层,输入是图像的一个特征区域,权重代表了该特征的重要性。前向传播时,我们会对输入特征和权重进行点积运算,再加上一个偏置项,得到该层的输出。这个过程可以简单表示为:

输出 = ( 输入特征 × 权重 ) + 偏置 \text{输出} = (\text{输入特征} \times \text{权重}) + \text{偏置} 输出=(输入特征×权重)+偏置

3. 计算损失

损失函数衡量预测值与实际标签之间的差异。对于分类任务,常用交叉熵损失。如果预测概率为§,实际标签为(y)(如果是正确类别则(y=1),否则(y=0)),单个样本的交叉熵损失为:
L = − y log ⁡ ( p ) − ( 1 − y ) log ⁡ ( 1 − p ) L = -y \log(p) - (1-y) \log(1-p) L=ylog(p)(1y)log(1p)
整体损失是对所有样本的这个值求平均。

4. 误差反向传播的核心计算

一旦有了损失,我们就要计算梯度,即损失函数关于每个权重和偏置的导数。这告诉我们要如何改变权重来减少损失。

  • 对于权重,计算公式可能类似于: ∂ L ∂ w \frac{\partial L}{\partial w} wL
    这表示损失对权重的偏导数,告诉我们调整权重的方向和量级。

  • 对于偏置,也有相应的导数计算。

5. 梯度下降的具体调整

知道了梯度之后,我们使用梯度下降来更新权重:
w 新 = w 旧 − α × ∂ L ∂ w w_{\text{新}} = w_{\text{旧}} - \alpha \times \frac{\partial L}{\partial w} w=wα×wL
这里,(\alpha)是学习率,控制了更新步长。这个公式意味着我们将当前权重沿着梯度的负方向移动一小步,因为梯度指向的是损失增大的方向,所以减去梯度是为了减少损失。

综合起来

每一次迭代,CNN都会:

  • 使用当前权重做一次前向传播,得到预测结果;
  • 计算预测与实际标签之间的损失;
  • 通过反向传播算法计算损失关于每个权重和偏置的梯度;
  • 根据梯度和学习率更新权重和偏置。

通过这样的循环,网络逐渐学习到如何从输入图像中提取有用的特征,并做出准确的分类决策,就像是我们不断调整望远镜,最终能够清晰地指引我们找到宝藏。

  • 14
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于 3D 卷积神经网络(CNN)的阿尔兹海默智能诊断 Web 应用 Alzheimer's Intelligent Diagnosis Web Application based on 3D Convolutional Neural Network and the AD… 深度学习(Deep Learning,简称DL)是机器学习(Machine Learning,简称ML)领域中一个新的研究方向,其目标是让机器能够像人一样具有分析学习能力,识别文字、图像和声音等数据。深度学习通过学习样本数据的内在规律和表示层次,使机器能够模仿视听和思考等人类活动,从而解决复杂的模式识别难题。 深度学习的核心是神经网络,它由若干个层次构成,每个层次包含若干个神经元。神经元接收上一层次神经元的输出作为输入,通过加权和转换后输出到下一层次神经元,最终生成模型的输出结果。神经网络之间的权值和偏置是神经网络的参数,决定了输入值和输出值之间的关系。 深度学习的训练过程通常涉及反向传播算法,该算法用于优化网络参数,使神经网络能够更好地适应数据。训练数据被输入到神经网络中,通过前向传播算法将数据从输入层传递到输出层,然后计算网络输出结果与实际标签之间的差异,即损失函数。通过反向传播算法,网络参数会被调整以减小损失函数值,直到误差达到一定的阈值为止。 深度学习中还包含两种主要的神经网络类型:卷积神经网络(Convolutional Neural Networks,简称CNN)和循环神经网络(Recurrent Neural Networks,简称RNN)。卷积神经网络特别擅长处理图像数据,通过逐层卷积和池化操作,逐步提取图像中的高级特征。循环神经网络则适用于处理序列数据,如文本或时间序列数据,通过捕捉序列中的依赖关系来生成模型输出。 深度学习在许多领域都取得了显著的成果,包括计算机视觉及图像识别、自然语言处理、语音识别及生成、推荐系统、游戏开发、医学影像识别、金融风控、智能制造、购物领域、基因组学等。随着技术的不断发展,深度学习将在更多领域展现出其潜力。 在未来,深度学习可能会面临一些研究热点和挑战,如自监督学习、小样本学习、联邦学习、自动机器学习、多模态学习、自适应学习、量子机器学习等。这些研究方向将推动深度学习技术的进一步发展和应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值