【tensorflow】T7.VGG16的咖啡豆识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

一、前言:

  本次包含了vgg16的官方模型和自建模型,在我的理解下,官方模型貌似不能很容易的增加或删除某些层,所以在日后可能会加上一些轻量化的内容(虽然100%准确率还没解决hhh)

二、一如即往的先导包导数据:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, models
import PIL, pathlib
import matplotlib.pyplot as plt
import numpy as np

data_dir = "/kaggle/input/dataset2"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob("*/*.png")))
print(image_count)

batch_size = 32
img_height = 224
img_wdith = 224

train_ds = keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split = 0.2,
    subset = "training",
    seed = 123,
    batch_size = batch_size,
    image_size = (img_height, img_wdith)

)

val_ds = keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split = 0.2,
    subset = "validation",
    seed = 123,
    batch_size = batch_size,
    image_size = (img_height, img_wdith)

)

class_names = train_ds.class_names
print(class_names)

plt.figure(figsize = (20, 10))

for image, labels in train_ds.take(1):
    for i in range(20):
        plt.subplot(5, 10, i+1)
        
        plt.imshow(image[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")
        
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

#输出:

#图片总数:1200

#数据集分割内容:

Found 1200 files belonging to 4 classes.
Using 960 files for training.
Found 1200 files belonging to 4 classes.
Using 240 files for validation.

 #类别输出:

['Dark', 'Green', 'Light', 'Medium']

 #查看数据集格式:

(32, 224, 224, 3)
(32,)

#数据集的样本:

 三、配置数据集和归一化:
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size = AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size = AUTOTUNE)

#归一化
normalization_layer = layers.Rescaling(1. / 255)

train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))

image_batch, labels_batch = next(iter(val_ds))
image_1 = image_batch[0]

print(np.min(image_1), np.max(image_1))

#归一化后的数据内最大为1最小为0 :

0.0 1.0
四、调用官方的vgg16模型
model = tf.keras.applications.VGG16(weights='imagenet')
model.summary()
#输出内容如下::
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5
553467096/553467096 ━━━━━━━━━━━━━━━━━━━━ 21s 0us/step
Model: "vgg16"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ input_layer (InputLayer)        │ (None, 224, 224, 3)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block1_conv1 (Conv2D)           │ (None, 224, 224, 64)   │         1,792 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block1_conv2 (Conv2D)           │ (None, 224, 224, 64)   │        36,928 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block1_pool (MaxPooling2D)      │ (None, 112, 112, 64)   │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block2_conv1 (Conv2D)           │ (None, 112, 112, 128)  │        73,856 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block2_conv2 (Conv2D)           │ (None, 112, 112, 128)  │       147,584 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block2_pool (MaxPooling2D)      │ (None, 56, 56, 128)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block3_conv1 (Conv2D)           │ (None, 56, 56, 256)    │       295,168 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block3_conv2 (Conv2D)           │ (None, 56, 56, 256)    │       590,080 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block3_conv3 (Conv2D)           │ (None, 56, 56, 256)    │       590,080 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block3_pool (MaxPooling2D)      │ (None, 28, 28, 256)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block4_conv1 (Conv2D)           │ (None, 28, 28, 512)    │     1,180,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block4_conv2 (Conv2D)           │ (None, 28, 28, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block4_conv3 (Conv2D)           │ (None, 28, 28, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block4_pool (MaxPooling2D)      │ (None, 14, 14, 512)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block5_conv1 (Conv2D)           │ (None, 14, 14, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block5_conv2 (Conv2D)           │ (None, 14, 14, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block5_conv3 (Conv2D)           │ (None, 14, 14, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block5_pool (MaxPooling2D)      │ (None, 7, 7, 512)      │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ flatten (Flatten)               │ (None, 25088)          │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ fc1 (Dense)                     │ (None, 4096)           │   102,764,544 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ fc2 (Dense)                     │ (None, 4096)           │    16,781,312 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ predictions (Dense)             │ (None, 1000)           │     4,097,000 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 138,357,544 (527.79 MB)
 Trainable params: 138,357,544 (527.79 MB)
 Non-trainable params: 0 (0.00 B)

 #两种方法的训练结果放在后面比较

 五、自建vgg16模型: 
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    x = Dropout(0.3)(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(6, (img_wdith, img_height, 3))
model.summary()

 #模型summary一下:

Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ input_layer (InputLayer)        │ (None, 224, 224, 3)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block1_conv1 (Conv2D)           │ (None, 224, 224, 64)   │         1,792 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block1_conv2 (Conv2D)           │ (None, 224, 224, 64)   │        36,928 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block1_pool (MaxPooling2D)      │ (None, 112, 112, 64)   │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block2_conv1 (Conv2D)           │ (None, 112, 112, 128)  │        73,856 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block2_conv2 (Conv2D)           │ (None, 112, 112, 128)  │       147,584 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block2_pool (MaxPooling2D)      │ (None, 56, 56, 128)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block3_conv1 (Conv2D)           │ (None, 56, 56, 256)    │       295,168 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block3_conv2 (Conv2D)           │ (None, 56, 56, 256)    │       590,080 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block3_conv3 (Conv2D)           │ (None, 56, 56, 256)    │       590,080 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block3_pool (MaxPooling2D)      │ (None, 28, 28, 256)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block4_conv1 (Conv2D)           │ (None, 28, 28, 512)    │     1,180,160 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block4_conv2 (Conv2D)           │ (None, 28, 28, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block4_conv3 (Conv2D)           │ (None, 28, 28, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block4_pool (MaxPooling2D)      │ (None, 14, 14, 512)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block5_conv1 (Conv2D)           │ (None, 14, 14, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block5_conv2 (Conv2D)           │ (None, 14, 14, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block5_conv3 (Conv2D)           │ (None, 14, 14, 512)    │     2,359,808 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ block5_pool (MaxPooling2D)      │ (None, 7, 7, 512)      │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ flatten (Flatten)               │ (None, 25088)          │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ fc1 (Dense)                     │ (None, 4096)           │   102,764,544 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ fc2 (Dense)                     │ (None, 4096)           │    16,781,312 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout (Dropout)               │ (None, 4096)           │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ predictions (Dense)             │ (None, 6)              │        24,582 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 134,285,126 (512.26 MB)
 Trainable params: 134,285,126 (512.26 MB)
 Non-trainable params: 0 (0.00 B)
六、编译及训练
initial_learning_rate = 0.0001
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate,
    decay_steps = 20,
    decay_rate = 0.92,
    staircase = True
    
    )

opt = keras.optimizers.Adam(learning_rate = initial_learning_rate)

model.compile(
    optimizer = opt,
    loss = keras.losses.SparseCategoricalCrossentropy(from_logits = True),
    metrics = ["accuracy"]
    
    )

epochs = 100

history = model.fit(
    train_ds,
    validation_data = val_ds,
    epochs = epochs,
    
    )
 七、两种模型的效果比较:

 #官方vgg16模型&参数的效果:

 #自建的vgg16模型效果:

八、loss和accuracy的曲线: 

#官方模型的结果:

#自建模型的结果:

九、总结:

  总结一下还是预训练的模型好用,调半天不如直接调,,,日后的方向可以在预训练参数的基础上着手提高准确率,最近会试试测试准确能不能到达100%,然后的任务是对vgg16进行轻量化。

 

  • 14
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
tensorflow.keras.applications.vgg16模块提供了VGG16模型的预训练版本。VGG16是一个经典的卷积神经网络模型,由Karen Simonyan和Andrew Zisserman于2014年提出。它在ImageNet数据集上取得了很好的性能,并成为了深度学习图像分类任务的重要基准模型之一。 使用tensorflow.keras.applications.vgg16可以加载VGG16模型的预训练权重,并进行图像分类任务。下面是一个加载VGG16模型并进行图像分类的示例: ```python from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions from tensorflow.keras.preprocessing import image import numpy as np # 加载VGG16模型(不包括顶部的全连接层) model = VGG16(weights='imagenet', include_top=False) # 载入并预处理图像 img_path = 'path/to/your/image.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # 使用VGG16模型进行预测 features = model.predict(x) # 解码预测结果 decoded_predictions = decode_predictions(features, top=3)[0] for pred_class in decoded_predictions: print(pred_class[1], pred_class[2]) ``` 以上示例代码中,我们首先加载了VGG16模型,并指定了使用ImageNet数据集上预训练的权重。然后,我们加载了待预测的图像,并进行了预处理,包括调整尺寸和归一化。接下来,使用VGG16模型对图像进行预测,并通过decode_predictions函数解码预测结果,输出前三个最可能的类别标签和对应的概率。 需要注意的是,VGG16模型的输入尺寸为224x224像素的RGB图像。在使用该模型进行预测时,需要将输入图像调整为相应的尺寸,并进行适当的预处理操作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值