tensorflow2.0 Keras VGG16 VGG19 系列 代码实现

该博客详细介绍了如何使用TensorFlow2.0和Keras实现VGG16及VGG19模型。内容包括VGG16模型的迁移学习和自建模型过程,以及VGG19模型的结构增强,增加了额外的卷积层。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型介绍参看:博文
在这里插入图片描述

VGG16

迁移模型

先看看标准答案

import  tensorflow as tf
from    tensorflow import keras

base_model = keras.applications.VGG16(weights='imagenet')
base_model.summary()

在这里插入图片描述

自建模型

import  tensorflow as tf
from    tensorflow import keras
from    tensorflow.keras import layers, models, Input
from    tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='conv1a')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='conv1b')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'pool1')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='conv2a')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='conv2b')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'pool2')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3a')(x)
    x = Conv2D(256, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值