MultiResUnet概述

MultiResUNet通过使用多分辨率块和残差路径改进了传统的U-Net结构,提升了在复杂医疗图像分割任务上的性能。它用3X3、7X7和5X5卷积的并行组合替代了单一的3X3卷积,并引入了1X1卷积层和残差连接,提高了模型对空间信息的理解。实验证明,尽管在简单分割任务上U-Net可能更优,但在具有挑战性的数据集上,MultiResUNet表现出显著的提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation paper

创新点

  1. 将u-net中的两个3X3的卷积替换成3X3,7X7卷积运算与5X5卷积运算并行合并,使用多分辨率思路替换传统卷积层。
  2. 使用res path替换传统u-net中的简单的跳过连接。
  3. 在具有挑战性的训练集有着卓越的提高。

multiblock

多分辨率分析来扩展U-Net的最简单方法是将3×3和7×7卷积运算与5×5卷积运算并行地合并,如图3a所示。
论文中使用一系列更小,更轻便的3×3卷积块来分解更大,更苛刻的5×5和7×7卷积层,如图3b所示。2个3×3卷积块的输出有效地近似5×5卷积运算,3个3×3卷积块的输出有效地近似7×7卷积运算。
最终MultiResUnet使用了三个3X3的卷积替换了unet中的模块,并且引入了1X1卷积层,添加了剩余连接,使模型能够理解一些其他空间信息。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值