微分、向量内积、方向导数、梯度、等高线、凸函数

微分

全微分 偏微分

d y d x \frac{dy}{dx} dxdy:全微分,y的变化率,根据链式法则
∂ y ∂ x \frac{\partial y}{\partial x} xy:偏微分,y沿x方向的变化率,把其他变量当做常量对x求导

一元函数 y=f(x) 求导

只有一个变量,此时,导数=偏导=全微分=偏微分
d y = ∂ y ∂ x d x d y d x = ∂ y ∂ x = ∂ f ∂ x dy=\frac{\partial y}{\partial x}dx\\ \frac{dy}{dx}=\frac{\partial y}{\partial x}=\frac{\partial f}{\partial x} dy=xydxdxdy=xy=xf

二元函数 y=f(x1,x2) 求导

有两个变量,此时,导数=全微分,偏导=偏微分
d y = ∂ y ∂ x 1 d x 1 + ∂ y ∂ x 2 d x 2 d y d x 1 = ∂ y ∂ x 1 + ∂ y ∂ x 2 ∂ x 2 ∂ x 1 d f d x 1 = ∂ f ∂ x 1 + ∂ f ∂ x 2 ∂ x 2 ∂ x 1 dy=\frac{\partial y}{\partial x_1}dx_1+\frac{\partial y}{\partial x_2}dx_2\\ \frac{dy}{dx_1}=\frac{\partial y}{\partial x_1}+\frac{\partial y}{\partial x_2}\frac{\partial x_2}{\partial x_1}\\ \frac{df}{dx_1}=\frac{\partial f}{\partial x_1}+\frac{\partial f}{\partial x_2}\frac{\partial x_2}{\partial x_1} dy=x1ydx1+x2ydx2dx1dy=x1y+x2yx1x2dx1df=x1f+x2fx1x2

二元隐函数求导 y = f ( x 1 , g ( x 1 ) ) , x 2 = g ( x 1 ) : d x 2 d x 1 = − f x 1 f x 2 y=f(x_1,g(x_1)),x_2=g(x_1):\frac{dx_2}{dx_1}=-\frac{f_{x_1}}{f_{x_2}} y=f(x1,g(x1)),x2=g(x1)dx1dx2=fx2fx1

x 2 = g ( x 1 ) x_2=g(x_1) x2=g(x1)求导:
d x 2 = ∂ x 2 ∂ x 1 d x 1 d x 2 d x 1 = ∂ x 2 ∂ x 1 . . . . . . . . . ① dx_2=\frac{\partial x_2}{\partial x_1}dx_1\\ \frac{dx_2}{dx_1}=\frac{\partial x_2}{\partial x_1}.........①\\ dx2=x1x2dx1dx1dx2=x1x2.........
令:f(x_1,g(x_1))=c,两边求导,常数求导为0
∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 = 0 ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 ∂ x 2 ∂ x 1 d x 1 = 0 ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 d x 1 d x 1 = 0 : 由 ① 可 知 ∂ f ∂ x 1 + ∂ f ∂ x 2 d x 2 d x 1 = 0 d x 2 d x 1 = − ∂ f ∂ x 1 / ∂ f ∂ x 2 = − f x 1 f x 2 \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}dx_2=0\\ \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}\frac{\partial x_2}{\partial x_1}dx_1=0\\ \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}\frac{dx_2}{dx_1}dx_1=0:由①可知\\ \frac{\partial f}{\partial x_1}+\frac{\partial f}{\partial x_2}\frac{dx_2}{dx_1}=0\\ \frac{dx_2}{dx_1}=-\frac{\partial f}{\partial x_1}/\frac{\partial f}{\partial x_2}=-\frac{f_{x_1}}{f_{x_2}}\\ x1fdx1+x2fdx2=0x1fdx1+x2fx1x2dx1=0x1fdx1+x2fdx1dx2dx1=0x1f+x2fdx1dx2=0dx1dx2=x1f/x2f=fx2fx1

梯度

定义

是一个偏导数组成的向量,表示函数值在某点沿着该方向增长最大。

梯度的导数:为正

导数是函数在某点沿着某个方向的变化率,梯度方向是函数值增大的方向,则对应的导数为正
y = − 2 x , ∇ f = ( ∂ f ∂ x ) = ( − 2 ) = − 2 i ⃗ = 2 ( − i ⃗ ) 梯 度 方 向 是 x 轴 负 方 向 , 对 应 的 导 数 为 2 , 即 沿 着 x 轴 负 方 向 方 向 , 每 前 进 1 , 函 数 值 增 长 2 y=-2x,\nabla f=(\frac{\partial f}{\partial x})=(-2)=-2\vec{i}=2(\vec{-i})\\梯度方向是x轴负方向,对应的导数为2,即沿着x轴负方向方向,每前进1,函数值增长2 y=2xf=(xf)=(2)=2i =2(i )x2沿x12

梯度的方向

∇ f = ( ∂ f ∂ x 1 , ∂ f ∂ x 2

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 导数微分是数学中的两个概念,它们都与函数的变化率有关。导数表示的是函数在一个点的变化率,而微分则表示的是函数在整个区间内的变化率。在数学上,导数可以通过对函数求导来计算,而微分则可以通过求出函数的导数来计算。总的来说,导数更加具体,而微分则更加抽象。 ### 回答2: 导数微分是微积分中两个相关但又不完全相同的概念。 导数表示的是函数在某一点处的变化率,它是函数在该点处的斜率。导数的定义可以通过极限来描述,即导数等于函数在该点的极限。 微分则是指函数在某一点处的微小变化。微分的定义可以用导数表示,即d(f(x))/dx = f'(x)dx,其中d(f(x))/dx 表示函数f(x)的微分,dx 表示自变量x的微小变化量。微分通常用于描述函数的局部变化和近似计算。 可以说,导数是用来描述整个函数的局部性质,而微分是用来描述函数的微小变化。导数可以通过微分来计算,而微分导数的一种具体应用。 从几何意义上来说,导数是函数曲线在某一点处的切线斜率,而微分是函数曲线在某一点处的切线与曲线之间的微小线段。 总结起来,导数是函数变化率的一种表示,微分是函数微小变化的一种描述。导数描述的是整体性质,微分描述的是局部性质。 ### 回答3: 导数微分是微积分中的两个概念,它们表达了函数在某一点的变化率。 导数是函数在某一点的变化率。具体来说,对于给定函数y=f(x),在某点x=a处的导数表示函数在x=a处的斜率,也就是函数在该点的瞬时变化率。导数可以用极限的形式来定义,即导数等于函数在该点附近的两个点之间的变化量的极限。 微分是函数的局部线性近似。具体来说,假设函数y=f(x),在某一点x=a处,用切线来近似曲线。那么微分就是切线的方程,表示函数在该点附近的近似变化情况。微分可以通过导数来计算,即微分等于函数在该点的导数乘以自变量的变化量。 总结起来,导数是函数的变化率,而微分是函数的近似变化情况。导数可以用极限来定义,而微分可以通过导数来计算。导数是一个数值,而微分是一个函数。在实际应用中,导数可以用来求解极值、判断函数的单调性和凸凹性等问题,而微分可以用来进行数值计算和建立微分方程等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

puspos

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值