# 微分、向量内积、方向导数、梯度、等高线、凸函数

## 微分

### 全微分 偏微分

d y d x \frac{dy}{dx} ：全微分，y的变化率，根据链式法则
∂ y ∂ x \frac{\partial y}{\partial x} ：偏微分，y沿x方向的变化率，把其他变量当做常量对x求导

### 一元函数 y=f(x) 求导

只有一个变量，此时，导数=偏导=全微分=偏微分
d y = ∂ y ∂ x d x d y d x = ∂ y ∂ x = ∂ f ∂ x dy=\frac{\partial y}{\partial x}dx\\ \frac{dy}{dx}=\frac{\partial y}{\partial x}=\frac{\partial f}{\partial x}

### 二元函数 y=f(x1,x2) 求导

有两个变量，此时，导数=全微分，偏导=偏微分
d y = ∂ y ∂ x 1 d x 1 + ∂ y ∂ x 2 d x 2 d y d x 1 = ∂ y ∂ x 1 + ∂ y ∂ x 2 ∂ x 2 ∂ x 1 d f d x 1 = ∂ f ∂ x 1 + ∂ f ∂ x 2 ∂ x 2 ∂ x 1 dy=\frac{\partial y}{\partial x_1}dx_1+\frac{\partial y}{\partial x_2}dx_2\\ \frac{dy}{dx_1}=\frac{\partial y}{\partial x_1}+\frac{\partial y}{\partial x_2}\frac{\partial x_2}{\partial x_1}\\ \frac{df}{dx_1}=\frac{\partial f}{\partial x_1}+\frac{\partial f}{\partial x_2}\frac{\partial x_2}{\partial x_1}

### 二元隐函数求导 y = f ( x 1 , g ( x 1 ) ) , x 2 = g ( x 1 ) ： d x 2 d x 1 = − f x 1 f x 2 y=f(x_1,g(x_1)),x_2=g(x_1)：\frac{dx_2}{dx_1}=-\frac{f_{x_1}}{f_{x_2}}

x 2 = g ( x 1 ) x_2=g(x_1) 求导：
d x 2 = ∂ x 2 ∂ x 1 d x 1 d x 2 d x 1 = ∂ x 2 ∂ x 1 . . . . . . . . . ① dx_2=\frac{\partial x_2}{\partial x_1}dx_1\\ \frac{dx_2}{dx_1}=\frac{\partial x_2}{\partial x_1}.........①\\

∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 = 0 ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 ∂ x 2 ∂ x 1 d x 1 = 0 ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 d x 1 d x 1 = 0 ： 由 ① 可 知 ∂ f ∂ x 1 + ∂ f ∂ x 2 d x 2 d x 1 = 0 d x 2 d x 1 = − ∂ f ∂ x 1 / ∂ f ∂ x 2 = − f x 1 f x 2 \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}dx_2=0\\ \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}\frac{\partial x_2}{\partial x_1}dx_1=0\\ \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}\frac{dx_2}{dx_1}dx_1=0：由①可知\\ \frac{\partial f}{\partial x_1}+\frac{\partial f}{\partial x_2}\frac{dx_2}{dx_1}=0\\ \frac{dx_2}{dx_1}=-\frac{\partial f}{\partial x_1}/\frac{\partial f}{\partial x_2}=-\frac{f_{x_1}}{f_{x_2}}\\

## 梯度

### 定义

#### 梯度的导数：为正

导数是函数在某点沿着某个方向的变化率，梯度方向是函数值增大的方向，则对应的导数为正
y = − 2 x ， ∇ f = ( ∂ f ∂ x ) = ( − 2 ) = − 2 i ⃗ = 2 ( − i ⃗ ) 梯 度 方 向 是 x 轴 负 方 向 ， 对 应 的 导 数 为 2 ， 即 沿 着 x 轴 负 方 向 方 向 ， 每 前 进 1 ， 函 数 值 增 长 2 y=-2x，\nabla f=(\frac{\partial f}{\partial x})=(-2)=-2\vec{i}=2(\vec{-i})\\梯度方向是x轴负方向，对应的导数为2，即沿着x轴负方向方向，每前进1，函数值增长2

#### 梯度的方向

∇ f = ( ∂ f ∂ x 1 , ∂ f ∂ x 2

• 0
点赞
• 2
收藏
觉得还不错? 一键收藏
• 打赏
• 0
评论
07-02
04-03 7203
08-24 1万+
10-02 4106
06-21 6068
11-22 1万+
09-14 1万+
11-07 776
03-06 9694
09-02 81万+
05-31 2万+
11-21 1209
05-01 4891

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

puspos

¥1 ¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。