微分、向量内积、方向导数、梯度、等高线、凸函数

本文深入探讨了微分的概念,包括全微分和偏微分,以及一元和二元函数的求导。进一步,文章详细阐述了梯度的定义、方向及其与等高线的关系,特别指出梯度方向对应的最大增益方向。同时,介绍了向量内积和方向导数。此外,还讨论了凸函数的性质,包括一阶导数和二阶导数的特征,以及正定矩阵与凸函数的关系。通过实例展示了如何判断一个函数是否为凸函数。
摘要由CSDN通过智能技术生成

微分

全微分 偏微分

d y d x \frac{dy}{dx} dxdy:全微分,y的变化率,根据链式法则
∂ y ∂ x \frac{\partial y}{\partial x} xy:偏微分,y沿x方向的变化率,把其他变量当做常量对x求导

一元函数 y=f(x) 求导

只有一个变量,此时,导数=偏导=全微分=偏微分
d y = ∂ y ∂ x d x d y d x = ∂ y ∂ x = ∂ f ∂ x dy=\frac{\partial y}{\partial x}dx\\ \frac{dy}{dx}=\frac{\partial y}{\partial x}=\frac{\partial f}{\partial x} dy=xydxdxdy=xy=xf

二元函数 y=f(x1,x2) 求导

有两个变量,此时,导数=全微分,偏导=偏微分
d y = ∂ y ∂ x 1 d x 1 + ∂ y ∂ x 2 d x 2 d y d x 1 = ∂ y ∂ x 1 + ∂ y ∂ x 2 ∂ x 2 ∂ x 1 d f d x 1 = ∂ f ∂ x 1 + ∂ f ∂ x 2 ∂ x 2 ∂ x 1 dy=\frac{\partial y}{\partial x_1}dx_1+\frac{\partial y}{\partial x_2}dx_2\\ \frac{dy}{dx_1}=\frac{\partial y}{\partial x_1}+\frac{\partial y}{\partial x_2}\frac{\partial x_2}{\partial x_1}\\ \frac{df}{dx_1}=\frac{\partial f}{\partial x_1}+\frac{\partial f}{\partial x_2}\frac{\partial x_2}{\partial x_1} dy=x1ydx1+x2ydx2dx1dy=x1y+x2yx1x2dx1df=x1f+x2fx1x2

二元隐函数求导 y = f ( x 1 , g ( x 1 ) ) , x 2 = g ( x 1 ) : d x 2 d x 1 = − f x 1 f x 2 y=f(x_1,g(x_1)),x_2=g(x_1):\frac{dx_2}{dx_1}=-\frac{f_{x_1}}{f_{x_2}} y=f(x1,g(x1)),x2=g(x1)dx1dx2=fx2fx1

x 2 = g ( x 1 ) x_2=g(x_1) x2=g(x1)求导:
d x 2 = ∂ x 2 ∂ x 1 d x 1 d x 2 d x 1 = ∂ x 2 ∂ x 1 . . . . . . . . . ① dx_2=\frac{\partial x_2}{\partial x_1}dx_1\\ \frac{dx_2}{dx_1}=\frac{\partial x_2}{\partial x_1}.........①\\ dx2=x1x2dx1dx1dx2=x1x2.........
令:f(x_1,g(x_1))=c,两边求导,常数求导为0
∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 = 0 ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 ∂ x 2 ∂ x 1 d x 1 = 0 ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 d x 1 d x 1 = 0 : 由 ① 可 知 ∂ f ∂ x 1 + ∂ f ∂ x 2 d x 2 d x 1 = 0 d x 2 d x 1 = − ∂ f ∂ x 1 / ∂ f ∂ x 2 = − f x 1 f x 2 \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}dx_2=0\\ \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}\frac{\partial x_2}{\partial x_1}dx_1=0\\ \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}\frac{dx_2}{dx_1}dx_1=0:由①可知\\ \frac{\partial f}{\partial x_1}+\frac{\partial f}{\partial x_2}\frac{dx_2}{dx_1}=0\\ \frac{dx_2}{dx_1}=-\frac{\partial f}{\partial x_1}/\frac{\partial f}{\partial x_2}=-\frac{f_{x_1}}{f_{x_2}}\\ x1fdx1+x2fdx2=0x1fdx1+x2fx1x2dx1=0x1fdx1+x2fdx1dx2dx1=0x1f+x2fdx1dx2=0dx1dx2=x1f/x2f=fx2fx1

梯度

定义

是一个偏导数组成的向量,表示函数值在某点沿着该方向增长最大。

梯度的导数:为正

导数是函数在某点沿着某个方向的变化率,梯度方向是函数值增大的方向,则对应的导数为正
y = − 2 x , ∇ f = ( ∂ f ∂ x ) = ( − 2 ) = − 2 i ⃗ = 2 ( − i ⃗ ) 梯 度 方 向 是 x 轴 负 方 向 , 对 应 的 导 数 为 2 , 即 沿 着 x 轴 负 方 向 方 向 , 每 前 进 1 , 函 数 值 增 长 2 y=-2x,\nabla f=(\frac{\partial f}{\partial x})=(-2)=-2\vec{i}=2(\vec{-i})\\梯度方向是x轴负方向,对应的导数为2,即沿着x轴负方向方向,每前进1,函数值增长2 y=2xf=(xf)=(2)=2i =2(i )x2沿x12

梯度的方向

∇ f = ( ∂ f ∂ x 1 , ∂ f ∂ x 2 ) = ( 3 , 4 ) = 3 i ⃗ + 4 j ⃗ : 梯 度 方 向 为 : 在 x 1 0 x 2 平 面 , 方 向 指 向 第 一 象 限 ( x 1 为 正 , x 2 为 正 , 因 为 3 i ⃗ + 4 j ⃗ ) , ∂ f ∂ x 2 / ∂ f ∂ x 1 = 4 / 3 , x 2 = 4 3 x 1 , ∇ f = ( ∂ f ∂ x 1 , ∂ f ∂ x 2 ) = ( − 3 , − 4 ) = − 3 i ⃗ − 4 j ⃗ : 梯 度 方 向 为 : 在 x 1 0 x 2 平 面 , 方 向 指 向 第 三 象 限 ( x 1 为 负 , x 2 为 负 , 因 为 − 3 i ⃗ − 4 j ⃗ ) , ∂ f ∂ x 2 / ∂ f ∂ x 1 = 4 / 3 , x 2 = 4 3 x 1 , \nabla f=(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2})=(3,4)=3\vec{i}+4\vec{j}:\\ 梯度方向为:在x_{1}0x_2平面,方向指向第一象限(x_1为正,x_2为正,因为3\vec{i}+4\vec{j}),\frac{\partial f}{\partial x_2}/\frac{\partial f}{\partial x_1}=4/3,x_2=\frac{4}{3}x_1,\\ \nabla f=(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2})=(-3,-4)=-3\vec{i}-4\vec{j}:\\ 梯度方向为:在x_{1}0x_2平面,方向指向第三象限(x_1为负,x_2为负,因为-3\vec{i}-4\vec{j}),\frac{\partial f}{\partial x_2}/\frac{\partial f}{\partial x_1}=4/3,x_2=\frac{4}{3}x_1,\\ f=(x1f,x2f)=(3,4)=3i +4j x10x2(x1x23i +4j )x2f/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值