微分
全微分 偏微分
d y d x \frac{dy}{dx} dxdy:全微分,y的变化率,根据链式法则
∂ y ∂ x \frac{\partial y}{\partial x} ∂x∂y:偏微分,y沿x方向的变化率,把其他变量当做常量对x求导
一元函数 y=f(x) 求导
只有一个变量,此时,导数=偏导=全微分=偏微分
d y = ∂ y ∂ x d x d y d x = ∂ y ∂ x = ∂ f ∂ x dy=\frac{\partial y}{\partial x}dx\\ \frac{dy}{dx}=\frac{\partial y}{\partial x}=\frac{\partial f}{\partial x} dy=∂x∂ydxdxdy=∂x∂y=∂x∂f
二元函数 y=f(x1,x2) 求导
有两个变量,此时,导数=全微分,偏导=偏微分
d y = ∂ y ∂ x 1 d x 1 + ∂ y ∂ x 2 d x 2 d y d x 1 = ∂ y ∂ x 1 + ∂ y ∂ x 2 ∂ x 2 ∂ x 1 d f d x 1 = ∂ f ∂ x 1 + ∂ f ∂ x 2 ∂ x 2 ∂ x 1 dy=\frac{\partial y}{\partial x_1}dx_1+\frac{\partial y}{\partial x_2}dx_2\\ \frac{dy}{dx_1}=\frac{\partial y}{\partial x_1}+\frac{\partial y}{\partial x_2}\frac{\partial x_2}{\partial x_1}\\ \frac{df}{dx_1}=\frac{\partial f}{\partial x_1}+\frac{\partial f}{\partial x_2}\frac{\partial x_2}{\partial x_1} dy=∂x1∂ydx1+∂x2∂ydx2dx1dy=∂x1∂y+∂x2∂y∂x1∂x2dx1df=∂x1∂f+∂x2∂f∂x1∂x2
二元隐函数求导 y = f ( x 1 , g ( x 1 ) ) , x 2 = g ( x 1 ) : d x 2 d x 1 = − f x 1 f x 2 y=f(x_1,g(x_1)),x_2=g(x_1):\frac{dx_2}{dx_1}=-\frac{f_{x_1}}{f_{x_2}} y=f(x1,g(x1)),x2=g(x1):dx1dx2=−fx2fx1
x 2 = g ( x 1 ) x_2=g(x_1) x2=g(x1)求导:
d x 2 = ∂ x 2 ∂ x 1 d x 1 d x 2 d x 1 = ∂ x 2 ∂ x 1 . . . . . . . . . ① dx_2=\frac{\partial x_2}{\partial x_1}dx_1\\ \frac{dx_2}{dx_1}=\frac{\partial x_2}{\partial x_1}.........①\\ dx2=∂x1∂x2dx1dx1dx2=∂x1∂x2.........①
令:f(x_1,g(x_1))=c,两边求导,常数求导为0
∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 = 0 ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 ∂ x 2 ∂ x 1 d x 1 = 0 ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 d x 1 d x 1 = 0 : 由 ① 可 知 ∂ f ∂ x 1 + ∂ f ∂ x 2 d x 2 d x 1 = 0 d x 2 d x 1 = − ∂ f ∂ x 1 / ∂ f ∂ x 2 = − f x 1 f x 2 \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}dx_2=0\\ \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}\frac{\partial x_2}{\partial x_1}dx_1=0\\ \frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}\frac{dx_2}{dx_1}dx_1=0:由①可知\\ \frac{\partial f}{\partial x_1}+\frac{\partial f}{\partial x_2}\frac{dx_2}{dx_1}=0\\ \frac{dx_2}{dx_1}=-\frac{\partial f}{\partial x_1}/\frac{\partial f}{\partial x_2}=-\frac{f_{x_1}}{f_{x_2}}\\ ∂x1∂fdx1+∂x2∂fdx2=0∂x1∂fdx1+∂x2∂f∂x1∂x2dx1=0∂x1∂fdx1+∂x2∂fdx1dx2dx1=0:由①可知∂x1∂f+∂x2∂fdx1dx2=0dx1dx2=−∂x1∂f/∂x2∂f=−fx2fx1
梯度
定义
是一个偏导数组成的向量,表示函数值在某点沿着该方向增长最大。
梯度的导数:为正
导数是函数在某点沿着某个方向的变化率,梯度方向是函数值增大的方向,则对应的导数为正
y = − 2 x , ∇ f = ( ∂ f ∂ x ) = ( − 2 ) = − 2 i ⃗ = 2 ( − i ⃗ ) 梯 度 方 向 是 x 轴 负 方 向 , 对 应 的 导 数 为 2 , 即 沿 着 x 轴 负 方 向 方 向 , 每 前 进 1 , 函 数 值 增 长 2 y=-2x,\nabla f=(\frac{\partial f}{\partial x})=(-2)=-2\vec{i}=2(\vec{-i})\\梯度方向是x轴负方向,对应的导数为2,即沿着x轴负方向方向,每前进1,函数值增长2 y=−2x,∇f=(∂x∂f)=(−2)=−2i=2(−i)梯度方向是x轴负方向,对应的导数为2,即沿着x轴负方向方向,每前进1,函数值增长2
梯度的方向
∇ f = ( ∂ f ∂ x 1 , ∂ f ∂ x 2