Kubernetes Master节点6443端口无法访问

本文记录了一次Kubernetes集群中Master节点6443端口无法从Node节点访问的问题排查过程。通过分析,发现问题是由于防火墙设置导致,即使iptables和firewall被禁用。最终通过重新启用并配置firewall,成功解决了端口访问问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Master节点6443端口无法访问

 

问题分析:

        首先在Node节点使用telnet检查了Master节点644端口无法访问,但是在Master中使用telnet是可以访问到端口的,并且netstat也能看到apiserver占用端口,所以问题故障在机器层面。

问题定位:

        既然是系统层面, 那就只有防火墙了,,iptables和firewall,但是都被禁用了为什么还会无法访问呢。坑来了!!!!!

问题解决:

        1.启动firewall

        systemctl start firewalld

        2.添加例外

        firewall-cmd --zone=public --add-port=6443/tcp --permanent

        3.重载

        firewall-cmd --reload

问题解决:

        kubectl get nodes 可看到节点都已Ready        

### 如何实现目标检测以达到30FPS的实时性能 为了实现实时目标检测并达到至少30帧每秒(FPS)的性能,可以考虑以下几种方法和技术: #### 1. 使用高效的目标检测算法 传统的R-CNN系列算法由于其复杂的推荐区域生成过程而难以满足实时需求。然而,Faster R-CNN通过引入区域提议网络(Region Proposal Network, RPN),显著提高了效率[^1]。尽管如此,对于更高要求的应用场景,如视频流分析或嵌入式设备上的部署,仍需进一步优化。 另一种选择是单阶段检测器,比如YOLO (You Only Look Once) 和 SSD (Single Shot MultiBox Detector),它们天生就设计得更加简洁快速。特别是最新版本如YOLOv5及其变体PP-PicoDet,已经能够做到非常低内存占用的同时保持高精度和高速度,在某些情况下甚至能达到超过150 FPS的表现[^4]。 #### 2. 轻量化神经网络结构 随着硬件资源限制日益明显以及应用场景多样化增加,“更高效的网络架构”成为研究热点之一。这通常涉及减少参数数量而不牺牲太多准确性。例如剪枝技术(pruning techniques), 知识蒸馏(knowledge distillation) 或者直接开发专用的小型化卷积层等手段都可以有效降低推理时间从而提升整体运行速率[^2]。 #### 3. 利用GPU/CPU加速计算 现代图形处理器(GPUs)提供了强大的并行处理能力来执行矩阵运算密集型任务,这对于深度学习模型尤其重要因为这些模型往往依赖大量乘加操作完成前向传播预测工作流程。此外还有专门针对AI应用定制化的TPU(tensor processing unit)/NPU(neural network processor units)也可以极大程度上缩短每次迭代所需耗费的时间周期进而达成更高的fps指标水平线以上标准. 另外值得注意的是软件层面同样存在着许多可挖掘潜力之处——编译器优化、算子融合等等措施均有助于改善最终呈现出来的实际效果表现形式;与此同时合理安排输入数据批次大小(batch size setting )亦不失为一种简单有效的提速方式之一。 ```python import torch from yolov5 import YOLOv5Model device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YOLOv5Model(pretrained=True).to(device) def detect(frame): frame_tensor = preprocess(frame).unsqueeze(0).to(device) with torch.no_grad(): predictions = model(frame_tensor) results = postprocess(predictions) return results ``` 上述代码片段展示了基于PyTorch框架加载预训练好的YOLO v5模型来进行目标检测的一个基本例子。这里假设已经有了相应的`preprocess()`函数用于准备图片作为网络输入,以及`postprocess()`负责解析输出得到最后的结果列表。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扶朕去网吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值