基于事件触发机制的有限数据速率数字网络分布式优化
1. 引言
近年来,网络控制系统的分布式协调与优化问题受到了广泛关注。这类问题的共同特点是需要设计分布式且计算量小的算法,避免给简单的智能体或繁忙的网络服务器带来复杂任务的负担。多智能体系统的分布式优化问题因其可扩展性和对通信网络的鲁棒性,吸引了不同领域研究人员的关注。
分布式优化问题在参数估计、检测与定位、资源分配、学习与回归等应用中都有涉及。在这些应用中,分布式智能体只需访问局部参数子集,通过局部计算和与相邻智能体通信,就能在不汇总所有相关参数的情况下最小化全局目标函数。为解决凸优化问题,相继提出了(次)梯度下降算法、对偶平均法、交替方向乘子法等分布式优化算法。
在设计与实际应用相关的分布式算法时,网络中智能体之间的通信至关重要,但也带来了一些限制,如有限的信道容量或带宽。早期基于共识的分布式优化算法通常假设智能体可以完美获取相邻智能体的信息,这意味着通信信道具有无限带宽,但实际的数字通信信道受带宽、能源限制,还存在通信不可靠、智能体传感能力有限和总体通信成本约束等问题。
信息量化和受限的数据速率是多智能体系统分布式平均共识中备受关注的两个关键问题。在有限数据速率的网络中,智能体之间的通信过程如下:
1. 每个智能体使用有限量化级别的量化器对要传输的信息进行量化。
2. 将量化后的信息编码为二进制序列并发送给邻居。
3. 邻居智能体接收代码后,使用相应的解码算法恢复发送方状态的估计值,这个过程会因量化产生一定误差。
尽管已有研究在分布式优化问题上取得了进展,但现有工作存在一个共同缺点,即智能体需要在每个时间步与相邻智能体进行通信,这无疑增加了通信成本。为解决
超级会员免费看
订阅专栏 解锁全文
1592

被折叠的 条评论
为什么被折叠?



