Llama 3 + LangChain + HuggingFace 实现本地部署RAG(检索增强生成)

本文介绍如何基于Llama 3大模型、以及使用本地的PDF文件作为知识库,实现RAG(检索增强生成)。

RAG,是三个单词的缩写:Retrieval、Augmented、Generation,代表了这个方案的三个步骤:检索、增强、生成。

基本的步骤是这样的:

  1. \1. 先用本地的各种文件,构建一个向量数据库,做为本地的知识库。
  2. \2. 然后当用户对大模型提问时,先在本地的向量数据库里面查找跟问题相关的内容。这一步叫做Retrieval检索。
  3. \3. 再把从向量数据库中查找到的内容,和用户的原始问题合到一起,作为Prompt发给大模型。这一步叫做Augmented增强。
  4. \4. 最后,大模型会根据prompt返回内容。这一步叫做Generation生成。

道理很简单,但实际用起来,里面会有很多地方需要去仔细的研究、调参。

1. 准备工作

在开始写代码之前,需要先从HuggingFace下载模型文件。我选用的是Meta-Llama-3-8B-Instruct。国内用户可以从hf-mirror.com下载,网络比HuggingFace.co稳定得多。

另外,还需要下载Embeddings模型,用于将文本转为embeddings,然后才能保存到向量数据库,并进行后续的相似性查找。我选用的是微软的multilingual-e5-large-instruct模型。也可以用北大的bge-m3模型。但这两个Embeddings模型的参数和相关度数值会有比较大的差异,需要去试验、调整代码里面的参数。

模型下载之后,需要在本地安装所需的Python库:

$ pip install PyPDF2 transformers langchain langchain_community langchain_huggingface faiss-
cpu

目前,我安装的langchain是0.2.1版本。随着版本的不同,这个库大概率会发生较大的改变,从而导致运行失败。

吐槽一下,langchain这玩意的版本兼容性真是无语的很,然后还拆成一堆的库需要分别安装,莫非他们的KPI是按照PIP所需要安装的数量考核的……

2. 加载/创建向量数据库

现在,可以开始写代码了。

首先,我们需要看看本地的向量数据库是否已经存在。如果存在的话,直接加载、使用;否则的话,则去读取本地的PDF文件、切分文本、然后用切分好的文本和指定的embeddings模型来创建向量数据库:

# Load pdf file and return the text
def load_single_pdf(file_path):
    pdf_reader = PdfReader(file_path)
    if not pdf_reader:
        return None
    
    ret = ''
    for i, page in enumerate(pdf_reader.pages):
        txt = page.extract_text()
        if txt:
            ret += txt

    return ret

# Split the text into docs
def split_text(txt, chunk_size=256, overlap=32):
    if not txt:
        return None
    
    splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
    docs = splitter.split_text(txt)
    return docs

# Save docs to vector store with embeddings
def create_vector_store(docs, embeddings, store_path):
    vector_store = FAISS.from_texts(docs, embeddings)
    vector_store.save_local(store_path)
    return vector_store

# Load vector store from file
def load_vector_store(store_path, embeddings):
    if os.path.exists(store_path):
        vector_store = FAISS.load_local(store_path, embeddings, 
            allow_dangerous_deserialization=True)
        return vector_store
    else:
        return None
    
def load_or_create_vector_store(store_path, pdf_file_path):
    embeddings = create_embeddings()
    vector_store = load_vector_store(store_path, embeddings)
    if not vector_store:
        # Not found, build the vector store
        txt = load_single_pdf(pdf_file_path)
        docs = split_text(txt)
        vector_store = create_vector_store(docs, embeddings, store_path)

    return vector_store
3. 检索

得到向量数据库之后,就可以根据用户的问题,在数据库内进行相关性查找(检索)。

# Query the context from vector store
def query_vector_store(vector_store, query, k=4, relevance_threshold=0.8):
    similar_docs = vector_store.similarity_search_with_relevance_scores(query, k=k)
    related_docs = list(filter(lambda x: x[1] > relevance_threshold, similar_docs))
    context = [doc[0].page_content for doc in related_docs]
    return context

这里,设置了一个relevance_threshold,当查找到的内容的相关度小于这个数值时,则认为无关,即无法从向量数据库里查找到与问题相关的信息。

4. 增强与生成

根据从向量数据库查找到的信息/上下文,可以把这些信息跟用户的输入的问题合到一起(增强),然后一起发给已经加载的大模型(生成)。

def ask(model, tokenizer, prompt, max_tokens=512):
    terminators = [
        tokenizer.eos_token_id,
        tokenizer.convert_tokens_to_ids('<|eot_id|>')
    ]
    input_ids = tokenizer([prompt],
        return_tensors='pt', 
        add_special_tokens=False).input_ids.to(CUDA_Device)
    generated_input = {
        'input_ids': input_ids,
        'max_new_tokens': max_tokens,
        'do_sample': True,
        'top_p': 0.95,
        'temperature': 0.9,
        'repetition_penalty': 1.1,
        'eos_token_id': terminators,
        'bos_token_id': tokenizer.bos_token_id,
        'pad_token_id': tokenizer.pad_token_id
    }

    generated_ids = model.generate(**generated_input)
    ans = tokenizer.decode(generated_ids[0], skip_special_token=True)
    return ans

def main():
    pdf_file_path = './Data/Aquila.pdf'
    store_path = './Data/Aquila.faiss'

    vector_store = load_or_create_vector_store(store_path, pdf_file_path)
    model, tokenizer = load_llm(LLM_Model)

    while True:
        qiz = input('Please input question: ')
        if qiz == 'bye' or qiz == 'exit':
            print('Bye~')
            break

        # Query context from vector store based on question, and compose prompt
        context = query_vector_store(vector_store, qiz, 6, 0.75)
        if len(context) == 0:
            # No satisfying context is found inside vector store
            print('Cannot find qualified context from the saved vector store. Talking to LLM without context.')
            prompt = f'Please answer the question: \n{qiz}\n'
        else: 
            context = '\n'.join(context)
            prompt = f'Based on the following context: \n{context}\nPlease answer the question: \n{qiz}\n'

        ans = ask(model, tokenizer, prompt)[len(prompt):]
        print(ans)

代码里面,事先加载了向量数据库、加载了大模型;然后在while循环里面,不停的让用户输入问题。根据输入的问题,去向量数据库查找相关的上下文。如果查找到了,则合到一起,发给大模型;否则将原始问题发给大模型。

完整的代码请查看:DeepLearning/Llama3_RAG.py at main · yuchuanwang/DeepLearning · GitHub

5. 问题

正如一开始所说的,RAG的道理很简单,但实际用起来,会发现里面有很多的地方需要去调参、研究。

比如说:

切分文本的时候,chunk_size和chunk_overlap取多少合适?

文本转向量时,使用哪个Embeddings模型最佳?

查找问题的相关上下文时,用欧式距离还是别的距离,比如余弦距离还是?

每个Embeddings模型,以多大的的相关度数值做为阈值合适?

如何评估RAG的整体效果?

等等等等……

真的是路漫漫其修远兮!

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

下面这些都是我当初辛苦整理和花钱购买的资料,现在我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

<think>好的,我现在需要帮用户介绍如何在本地使用Local AI、llama.cpp和DeepSeek部署RAG的详细流程。首先,我需要确认自己对各个组件的理解是否正确。RAG检索增强生成,结合了检索外部知识和生成模型的能力,对吧?Local AI可能是指本地运行的AI框架,llama.cpp是C++实现的LLM推理引擎,DeepSeek可能是一个特定的模型或者数据集?可能需要进一步确认。 用户的需求是详细的部署流程,所以需要分步骤说明。首先,可能需要环境准备,比如安装依赖、下载模型等。然后,RAG通常包括文档处理、向量数据库、检索生成几个部分。我需要考虑如何整合这些组件。 首先,安装llama.cpp,需要从GitHub克隆仓库,编译,可能需要安装依赖如CMake、Python等。然后下载DeepSeek的模型,可能是Hugging Face格式,需要转换成gguf格式以便llama.cpp使用。转换步骤可能需要使用llama.cpp的python脚本。 接下来,处理用户文档,使用嵌入模型生成向量,建立向量数据库。这里可能需要用到Local AI提供的嵌入模型,或者Hugging Face的某个模型。然后,将查询时检索相关文档,输入到DeepSeek模型中生成答案。 需要详细说明每个步骤的具体操作,比如转换模型的命令、处理文档的代码示例、如何启动llama.cpp的API服务,以及如何集成检索生成部分。可能还需要提到使用FAISS或Chroma作为向量数据库,以及如何将检索到的上下文传递给生成模型。 需要注意的是,用户可能对某些步骤不熟悉,比如模型转换、向量数据库的构建,所以需要给出具体的命令和代码示例。同时,要确保所有步骤在本地运行,不需要外部API,符合Local AI的要求。另外,DeepSeek模型的具体名称和下载位置可能需要确认,是否有现成的gguf版本,或者是否需要自己转换。 可能遇到的坑:模型转换时的参数设置,向量数据库的匹配问题,以及如何有效将检索结果整合到生成模型的输入中。需要提示用户可能需要的调整,比如上下文长度限制,或者检索top_k的设置。 总结下来,步骤大概是:环境准备→模型下载与转换→文档处理与向量数据库构建→RAG流程集成→测试与优化。每个步骤需要详细命令和代码,确保用户能一步步操作。</think>以下是在本地使用 **Local AI + llama.cpp + DeepSeek** 部署 RAG(Retrieval-Augmented Generation)的详细流程: --- ### **1. 环境准备** #### **1.1 安装依赖** ```bash # 基础依赖 sudo apt-get update && sudo apt-get install -y build-essential cmake python3-pip # Python 依赖 pip install numpy pandas sentence-transformers faiss-cpu langchain flask ``` #### **1.2 克隆 llama.cpp 仓库** ```bash git clone https://github.com/ggerganov/llama.cpp cd llama.cpp && make ``` --- ### **2. 模型准备** #### **2.1 下载 DeepSeek 模型** - 从 Hugging Face 下载模型(如 `deepseek-ai/deepseek-llm-7b-chat`): ```bash git lfs install git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat ``` #### **2.2 转换模型为 GGUF 格式** ```bash # 安装转换依赖 pip install -r llama.cpp/requirements.txt # 转换 HF 模型到 GGUF python3 llama.cpp/convert-hf-to-gguf.py deepseek-llm-7b-chat --outfile deepseek-7b-chat.gguf # 量化(可选,减少内存占用) ./llama.cpp/quantize deepseek-7b-chat.gguf deepseek-7b-chat-Q4_K_M.gguf Q4_K_M ``` --- ### **3. 构建向量数据库** #### **3.1 准备本地文档** 将文本文件(如 PDF、TXT)存放在 `documents/` 目录下。 #### **3.2 生成文档向量** ```python from sentence_transformers import SentenceTransformer from langchain.vectorstores import FAISS # 加载嵌入模型(本地运行) embed_model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2") # 读取文档并分块 documents = [...] # 从本地文件读取文本并分块 # 生成向量 doc_embeddings = embed_model.encode([doc.text for doc in documents]) # 构建向量数据库 vector_db = FAISS.from_embeddings(doc_embeddings, documents) vector_db.save_local("faiss_index") ``` --- ### **4. 部署 RAG 流程** #### **4.1 启动 llama.cpp 服务** ```bash ./llama.cpp/server -m deepseek-7b-chat-Q4_K_M.gguf --ctx-size 2048 --port 8000 ``` #### **4.2 实现 RAG 逻辑** ```python from flask import Flask, request, jsonify from sentence_transformers import SentenceTransformer from langchain.vectorstores import FAISS app = Flask(__name__) embed_model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2") vector_db = FAISS.load_local("faiss_index", embed_model) @app.route("/ask", methods=["POST"]) def ask(): # 检索 query = request.json["query"] query_embed = embed_model.encode([query]) docs = vector_db.similarity_search_by_vector(query_embed[0], k=3) # 构造提示词 context = "\n".join([doc.text for doc in docs]) prompt = f"基于以下上下文回答问题:\n{context}\n\n问题:{query}\n回答:" # 调用本地模型生成 response = requests.post( "http://localhost:8000/completion", json={"prompt": prompt, "temperature": 0.7, "max_tokens": 512} ) return jsonify({"answer": response.json()["content"]}) if __name__ == "__main__": app.run(port=5000) ``` --- ### **5. 测试与优化** #### **5.1 发送查询请求** ```bash curl -X POST http://localhost:5000/ask -H "Content-Type: application/json" -d &#39;{"query": "如何解释量子计算?"}&#39; ``` #### **5.2 优化方向** - **性能优化**:调整 `k`(检索文档数量)和 `max_tokens`(生成长度)。 - **模型优化**:尝试不同量化版本的 DeepSeek 模型(如 Q5_K_M)。 - **检索优化**:使用更精确的嵌入模型(如 `bge-large-zh-v1.5`)。 --- ### **关键点说明** 1. **本地化运行**:所有组件(模型、向量数据库、服务)均在本地运行,无需网络。 2. **硬件要求**: - 7B 模型需至少 8GB 内存(量化后)。 - GPU 加速需编译 llama.cpp 时启用 CUDA。 3. **扩展性**:可替换为其他开源模型(如 Qwen、ChatGLM3)。 通过以上步骤,你可以在本地低成本实现一个基于私有数据的智能问答系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值