微调一个自己的大模型(腾讯云cloud studio + llama factory)

最近就是新项目和老项目一起支撑,老项目的人以为我还在支撑,然后新项目的人以为我不在支撑老项目了。

本来我还乐呵呵的两边一起支撑,后来领导突然问我怎么还在干老项目,让我把老项目的事情交给另一个同事去干。

感觉有点吃力不讨好之后,我直接完全不管老项目了,在我的签名上直接加上了老项目支撑=〉xx同事。

新项目这边之前干过一个星期,有点基础,上手也挺快。

这周当了两天测试,当了几天开发,解了一个问题单。

具体的话就是把转测的门槛用例测完了,开发了一个完整的新功能,然后定位了一个并发问题。

工作内容挺饱满,属于是又有输出了hhh

本来以为需要一段时间才能微调一个自己的大模型,结果上周下班后,花了几天时间,居然调好了一个

我这边选用的是腾讯云cloud studio + llama factory来调的。

首先我自己没有gpu环境,就只能搞个服务器来弄。恰巧腾讯云可以白嫖GPU服务器,所有就用它了,链接如下:

https://ide.cloud.tencent.com/dashboard/gpu-workspace

这个GPU服务器的内存是1.5G,不算大,但是既然我是白嫖怪,我就只能说腾讯大气

在这里插入图片描述

接着我找了个开源的微调框架llama factory,本来准备用ChatGLM的那个微调教程的,但是看了一下,前者好像用的人更多,也更通用,所以就选它了

我这边的话,微调并使用自己的大模型分为3部

  1. 微调开源大模型,保存参数
  2. 将模型输出成gguf格式保存
  3. 使用Ollama部署自己的大模型

第一步的话,因为我的显存只有1.5G,所以我选择微调Qwen2.5-0.5b的大模型,这个模型需要的显存大概估计如下:

参数0.5G、梯度0.5G、优化器0.3G左右,大概1.3G,所以我的服务器可以调起来。

最后调的时候我发现它实际占用只有700M左右,完全足够。

首先要自己整个huggingface的帐号,因为很多开源模型都是在这里下载的。注意,自己要在网站上生成一个token,然后在服务器登陆。

pip install --upgrade huggingface_hub
#   Linux
export HF_ENDPOINT=https://hf-mirror.com

huggingface-cli login

然后下载llama factory

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

微调大模型: 可以直接在已有的example上修改即可修改一下模型的名字,和自己微调数据集就好。

llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml

我这里修改了模型名称为qwen2.5-0.5b, 然后参数类型把bf16改成了false。

在这里插入图片描述

在训练好后,模型参数就会保留下来。

在这里插入图片描述

接下来第二步就是根据模型参数,输出模型的gguf文件。

git clone https://github.com/ggerganov/llama.cpp

cd /root/autodl-tmp/llama.cpp

python convert_hf_to_gguf.py /workspace/LLaMA-Factory-main/models/llama3_lora_sft --outfile /workspace/tmp/qwen2.5-0.5b-sft.gguf --outtype q8_0

最后一步就是运行自己的模型。

在保存下来的模型文件位置新建一个配置文件test.mf

FROM ./qwen2.5-0.5b-sft.gguf

在这里插入图片描述

然后ollama创造一个model

ollama create myModel -f ./test.mf

最后运行模型 ollama run myModel,然后在enchanted里面与模型对话。

在这里插入图片描述

就成功部署好自己微调的大模型了

补充一下,最后我这个微调的大模型非常的垃圾,感觉还不如原来的0.5b hhhh。

微调大模型,感觉还是得大显存微调大参数模型,同时微调的数据集也要好。不然感觉微调了个寂寞。

职场菜鸟继续闯关ing

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### 如何在腾讯云上进行大模型训练 #### 使用腾讯云Cloud StudioLLaMA Factory微调大模型 对于希望利用腾讯云环境来开发和优化自有大型语言模型(LLMs)的研究人员或开发者而言,可以通过腾讯云Cloud Studio结合LLaMA Factory实现这一目标[^1]。此方法不仅提供了便捷的云端集成开发体验,还支持通过图形界面轻松管理项目文件、运行实验以及监控进度。 #### 获取必要的学习材料和技术文档 为了帮助用户更好地理解和掌握大模型训练技巧,官方已经整理并开放了一系列高质量的学习资源,涵盖了从基础理论到高级实践各个方面的内容。这些资料包括但不限于AI大模型入门思维导图、专业的书籍手册、详细的视频教程等,均可以作为自学过程中不可或缺的支持工具。 #### 构建专属的大规模预训练模型服务 随着技术的发展,越来越多的企业开始关注如何将通用型大模型转化为更具针对性的应用解决方案。针对此类需求,腾讯云推出了基于TI平台的服务体系——行业大模型精选商店。该服务体系能够帮助企业快速搭建起满足特定业务场景所需的高性能计算集群,并提供一站式的MaaS(Model-as-a-Service)模式下的技术支持和服务保障[^2]。 ```python # Python代码示例:连接至腾讯云实例并加载数据集 import tencentcloud.common.exception.tencent_cloud_sdk_exception as exce from tencentcloud.cvm.v20170312 import cvm_client, models try: client = cvm_client.CvmClient(cred, "ap-guangzhou", profile) req = models.DescribeInstancesRequest() resp = client.DescribeInstances(req) except exce.TencentCloudSDKException as err: print(err) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值