现在,一行命令使用Ollama运行任意魔搭GGUF模型

img

Ollama是建立在llama.cpp开源推理引擎基础上的大模型推理工具框架。得益于底层引擎提供的高效模型推理,以及多硬件适配,Ollama能够在包括CPU、GPU在内的,不同的硬件环境上,运行各种精度的GGUF格式大模型。通过一个命令行就能拉起LLM模型服务。

通过Ollama,开发者可以更好的使用GGUF模型。而当前ModelScope社区上已经托管了数千个优质的GGUF格式的大模型,为了让开发者更方便地把这些模型用起来,社区最近支持了Ollama框架和ModelScope平台的链接,通过简单的 ollama run命令,就能直接加载运行ModelScope模型库上的GGUF模型。

01

一键运行

入门非常简单:

  1. 设置ollama下启用
ollama serve
  1. ollama run ModelScope任意GGUF模型
ollama run modelscope.cn/Qwen/Qwen2.5-3B-Instruct-GGUF

在安装了Ollama的环境上(建议使用>=0.3.12版本),直接通过上面的命令行,就可以直接在本地运行 Qwen2.5-3B-Instruct-GGUF模型。

img

命令行的具体格式为:

ollama run modelscope.cn/{model-id}

其中model-id的具体格式为{username}/{model},例如:

ollama run modelscope.cn/Qwen/Qwen2.5-3B-Instruct-GGUF
ollama run modelscope.cn/second-state/gemma-2-2b-it-GGUF
ollama run modelscope.cn/Shanghai_AI_Laboratory/internlm2_5-7b-chat-gguf

关于如何安装Ollama,可参考Ollama官方文档(https://ollama.com/download),建议使用>=0.3.12版本。

或者参见这个ModelScope Notebook来完成安装:https://modelscope.cn/notebook/share/ipynb/4a85790f/ollama-installation.ipynb 。

02

配置定制

Ollama支持加载不同精度的GGUF模型,同时在一个GGUF模型库中,一般也会有不同精度的模型文件存在,例如Q3_K_M, Q4_K_M, Q5_K等等,入下图所示:

img

一个模型repo下的不同GGUF文件,对应的是不同量化精度与量化方法。默认情况下,如果模型repo里有Q4_K_M版本的话,我们会自动拉取并使用该版本,在推理精度以及推理速度,资源消耗之间做一个较好的均衡。如果没有该版本,我们会选择合适的其他版本。

此外,您也可以显式配置来指定想要使用的版本。例如:

ollama run modelscope.cn/Qwen/Qwen2.5-3B-Instruct-GGUF:Q3_K_M

这里命令行最后的:Q3_K_M选项,就指定了使用Q3_K_M精度的GGUF模型版本,这个选项大小写不敏感,也就是说,无论是:Q3_K_M,还是:q3_k_m,都是使用模型repo里的"qwen2.5-3b-instruct-q3_k_m.gguf" 这个模型文件。当然,您也可以直接指定模型文件的全称,这同样是支持的:

ollama run modelscope.cn/Qwen/Qwen2.5-3B-Instruct-GGUF:qwen2.5-3b-instruct-q3_k_m.gguf

03

更多配置选项

Ollama支持通过Modelfile配置文件,来实现大模型推理的参数自定义。ModelScope与Ollama的对接,会根据平台上GGUF模型的信息,自动生成每个模型需要的配置与参数,包括推理模版(Template),模型参数(Parameters)等等,后续我们也将支持模型贡献者在模型repo里,通过特定文件来指定专属的配置,敬请期待 :)。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

下面这些都是我当初辛苦整理和花钱购买的资料,现在我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

### 使用Ollama框架运行大型GGUF模型 为了使用Ollama框架来部署和运行大型GGUF模型,需遵循特定的配置流程。虽然具体细节可能因版本更新而有所不同,但基本步骤保持相对稳定。 #### 准备环境 确保本地环境中已安装并设置好Docker服务。这一步骤对于启动任何基于容器化的解决方案至关重要[^1]。接着,下载所需的Ollama镜像文件,并确认该镜像支持目标硬件架构(如GPU加速)。通常情况下,官方文档会提供详细的指导说明以及兼容性的列表。 #### 配置模型导出路径 创建一个指定目录用于保存转换后的GGUF格式模型文件。此操作类似于TensorFlow Serving中的`export/`目录设定,在这里不仅存储了模型图还包含了变量信息。假设已经有一个训练好的模型准备就绪,则应将其按照GGUF标准进行序列化处理后放置于上述提到的专用文件夹内。 ```bash mkdir gguf_model_export cp path_to_your_trained_model/* ./ggum_model_export/ ``` #### 启动Ollama服务器实例 利用Docker命令行工具启动包含OLLAMA服务的容器实例。注意映射端口的选择要避开冲突,并且正确指定了挂载点以便让内部程序能够访问外部定义的模型资源位置。下面给出的例子展示了如何执行这一过程: ```bash docker run -d \ --name ollama_service \ -p 8501:8501 \ --mount type=bind,source="$(pwd)"/gguf_model_export,target=/models/gguf \ -e MODEL_NAME=gguf \ tensorflow/serving ``` 此处需要注意的是,尽管示例中使用的仍然是`tensorflow/serving`作为基础镜像名称,但在实际应用场景下应当替换为对应供应商所提供的最新版Ollama镜像标签。 #### 测试API接口响应情况 一旦成功启动了带有预加载模型的服务进程之后,就可以借助HTTP请求方式向其发送预测任务了。一般而言,RESTful风格的API设计允许客户端轻松构建查询语句并通过POST方法传递待分析的数据样本给后台解析引擎处理。例如,可以通过curl命令来进行简单测试验证: ```bash curl -X POST http://localhost:8501/v1/models/gguf:predict -d '{"instances": ["your input text here"]}' ``` 以上就是关于怎样运用Ollama平台实现对大规模GGUF结构化语言模型的支持概述。当然,针对不同类型的业务需求还可以进一步探索更多高级特性和优化选项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值