大模型面经——大模型训练中出现loss突刺的原因和解决方法详解

大模型面经——大模型训练中出现loss突刺的原因和解决方法详解

本篇主要介绍大模型训练时出现loss突刺(loss spike)的原因与解决方案。

需要先说明一下,其实在参数量级较少(6B~7B)的情况下出现小的loss波动是很正常的,这里的loss spike指的是大参数量级(100B以上)的大模型在预训练过程中loss暴涨的情况。

本篇是大模型训练微调实践经验最后一篇,该系列其他文小伙伴们也可以了解一下。

下面是本文的快捷目录。

一、大模型训练突刺是什么

二、大模型训练为什么会出现loss突刺

三、大模型训练出现loss 突刺怎么解决?

一、大模型训练突刺是什么

loss spike指的是大模型(100B以上)在预训练过程中出现的loss突然暴涨的情况。如下图

图片

图中训练过程中红框中突然上涨的loss尖峰就是loss突刺(loss spike);

当出现这种情况以后,模型需要很长时间才能再次回到spike之前的状态(论文中称为pre-explosion),更严重的情况就是loss 再也没办法回来了,即模型再也无法收敛。

PaLM和GLM130b之前的解决办法是找到loss spike之前最近的checkpoint,更换之后的训练样本来避免loss spike的出现。

二、大模型训练为什么会出现loss突刺

首先讲结论:

loss spike的出现与梯度更新幅度,优化器中ε 大小,batch大小这三个条件密切相关:

大模型训练中使用Adam优化器,造成梯度变化与更新参数变化不满足独立性,浅层参数长时间不更新,并且大模型训练中batch太大,后期梯度更新又趋于平稳导致的Loss spike。

下面具体来讲讲为什么。

1. Adam优化器原理

吴恩达老师说过,梯度下降(Gradient Descent)就好比一个人想从高山上奔跑到山谷最低点,用最快的方式(steepest)奔向最低的位置(minimum)。优化器就是让梯度下降走得更顺利最终达到我们期望的目的地的工具。

图片

Adam优化器,结合AdaGrad和RMSProp两种优化器的优点。

其对梯度的一阶矩估计(First Moment Estimation,即梯度的均值)和二阶矩估计(Second Moment Estimation,即梯度的未中心化的方差)进行综合考虑,计算出更新步长。

我们来具体看一下更新规则。

已知t时间步的梯度为

图片

  • 首先,计算梯度的指数移动平均数,m0 初始化为0。

这里类似于Momentum算法,需要综合考虑之前时间步的梯度动量。

图片

β1 系数为指数衰减率,控制权重分配(动量与当前梯度),通常取接近于1的值;默认为0.9。

下图简单展示出时间步1~20时,各个时间步的梯度随着时间的累积占比情况。

图片

  • 其次,计算梯度平方的指数移动平均数,v0初始化为0。

图片

β2 系数为指数衰减率,控制之前的梯度平方的影响情况;类似于RMSProp算法,对梯度平方进行加权均值。默认为0.999。

  • 第三,对梯度均值mt进行偏差纠正

图片

这里是由于m0初始化为0,在训练初期阶段会导致mt偏向于0;所以,此处需要对梯度均值mt进行偏差纠正,降低偏差对训练初期的影响。

  • 第四,与m0 类似,因为v0初始化为0导致训练初始阶段vt 偏向0,对其进行纠正。

图片

  • 第五,更新参数,初始的学习率α乘以梯度均值与梯度方差的平方根之比

图片

表达式中,默认学习率α=0.001,ε=10^-8,避免除数变为0。

由表达式可以看出,对更新的步长计算,能够从梯度均值及梯度平方两个角度进行自适应地调节,而不是直接由当前梯度决定。

2. 原因解释

可以看出来,Adam算法本质是牛顿下降法的一个迭代逼近。

图片

整个过程看上去是很优美的,但收敛过程并没有想象中顺利。

我们来预设一个理想的ut更新参数的变化趋势:

在t=1的初始状态时,u1集中在+1,-1附近;

图片

训练到最后时,模型会收敛到某个最优点,此时un集中在0附近。

也就是说,更新参数变化过程可以想象成一个两端(非稳态)向中间(稳态)收拢的过程。

实际观察到的现象也是如此,见下图

图片

进入正态分布的稳态之后,理想的更新参数变化趋势应该是方差越来越小,所有更新参数逐渐向0靠近。

理论上应该是一个单向的过程,即稳定的单峰状态(unimodal)不会再次进入非稳定的双峰状态 (bimodal),但事实并非如此,更新参数会再次进入非稳定的双峰状态。

理论总结:从中心极限定理(可以结合道尔顿板实验理解)出发,随机事件的叠加进入单峰的正态分布的必要条件之一是各个随机事件事件之间应该是相互独立的,但是梯度变化以及更新参数的变化并不能特别好的满足独立性这一条件,易导致更新参数振荡,loss spike出现以及loss 不收敛。

另外loss spike也跟模型训练时浅层参数长期不更新有关,下面我们对loss spike出现前后的模型变化进行分析:

1)当前模型处在稳态(健康状态),即单峰的正态分布状态,并且梯度值 |gt|>>ε,此时loss平稳,训练过程正常;

2)模型浅层(embedding层)梯度|g|<<ε,这一般是由于训练一段时间之后,浅层的语义知识表示此时一般已经学习得较好。但此时深层网络(对应复杂任务)的梯度更新还是相对较大;

3)一段时间浅层(embedding层)梯度 |gt| << ε 之后会导致 |mt| << ε, ε。此时vt趋于0。因此导致浅层参数得不到更新(也对应于上述参数更新事件不独立的原因)

4)此时虽然浅层(embedding层)参数长时间不更新,但是深层的参数依然一直在更新。长时间这样的状态之后,batch之间的样本分布变化可能就会直接导致浅层(embedding层)再次出现较大的梯度变化,变成双峰的非稳定状态;

这里需要补充两个点:

  • 为什么小模型不会出现这种情况?

小模型函数空间小,无法捕获样本的分布变化,越大规模的模型对样本之间不同维度的特征分布变化越敏感

  • 为什么更换样本重新训练有可能会减少Loss spike的出现频率?

本质上就是选择分布变化较小的样本,减小浅层梯度变换幅度

5)这个阶段模型处于非稳态,梯度变化幅度较大,每一次的梯度变化和更新参数变化事件之间又出现了一定的独立性,因此经过一定的时间之后模型有可能再次进入稳态,loss再次回到之前的状态,也可能直接飞了再也无法收敛。

最后我们用比较简单的话总结一下,

loss spike本质原因是梯度变化以及更新参数的变化并不能特别好的满足独立性,导致随机事件的叠加难以按照理想状态进入单峰的正态分布

表现出来就是浅层网络参数突然进入到了之前长时间不在的状态;并与模型深层参数当前的状态形成了连锁反应造成了模型进入非稳态;一般情况即使出现loss spike也会自动回复到正常状态,但也有概率可能模型直接没法收敛。

三、大模型训练出现loss 突刺怎么解决?

这里给一些参考,大家也可以再自己发挥想一想。

\1. 更换batch样本 :常规方法,但是成本比较高

\2. 减小learning rate:治标不治本,对更新参数的非稳态没有做改进

\3. 重新定义在vt=0时候的值

根据公式

图片

可以减小ε大小,或者直接设置ε为0,

\4. 把浅层梯度直接乘一个缩放系数来减小浅层梯度更新值

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 21
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值