模型的损失(Loss)
在机器学习和深度学习中,损失是一个衡量模型预测结果与真实结果之间差距的度量。损失函数(Loss Function)是一个数学公式,用于计算这种差距。损失的大小反映了模型的预测准确度,损失越小,模型的预测结果越接近真实值。
1. 损失的定义和作用
- 定义:损失是模型预测值与真实值之间的误差。通过计算损失,可以评估模型的性能。
- 作用:损失在训练过程中用于指导模型参数的更新,通过优化算法(如梯度下降),逐步减小损失,从而提高模型的预测能力。
2. 常见的损失函数
不同类型的任务使用不同的损失函数。以下是一些常见的损失函数:
- 均方误差(MSE, Mean Squared Error):
3. 损失在训练中的作用
- 优化目标:在训练过程中,模型通过优化算法(如梯度下降)不断调整参数,以最小化损失函数的值。这是通过计算损失相对于模型参数的梯度,然后更新参数来实现的。
- 模型评估:通过监控训练损失和验