相信前端的同学已经在研究基于LLM的应用开发了,但是现在网上的教程都是基于openAI的接口,要注册、付费,有没有免费的方便前端把玩的本地LLM呢?当然有。
作为中国人,我们首先把目光聚焦在支持中文的大模型上,然后在一堆开源模型中反复研究,最终,我们选定ChatGLM这个由清华和智普合作的中英双语大模型。除了支持中文外,另外一个重要的原因是,能够让前端的同学上手,而不需要搭建复杂的环境,在nodejs的基础上可以轻松跑起来。
在生态里面,chatglmjs可以帮助我们在nodejs、electron等环境下面轻松的跑一个本地的LLM,有了这个本地的LLM,那么我们在做大模型应用开发的时候,就不用再去连openai的接口,省下一笔不小的费用。
接下来我们看看怎么上手。
首先,安装chatglmjs:
npm i chatglmjs
安装之前需要确保你的电脑上安装了cmake,需要支持c/c++的编译。
接下来,生成/下载大模型bin文件。
git clone --recursive https://github.com/li-plus/chatglm.cpp.git && cd chatglm.cpp
python3 -m pip install -U pip
python3 -m pip install torch tabulate tqdm transformers accelerate sentencepiece
python3 chatglm_cpp/convert.py -i THUDM/chatglm3-6b -t q4_0 -o chatglm3-6b.q4_0.bin
如果你是个懒人,可以直接点击这里下载已经生成好的bin文件。
最后,进入nodejs的代码编写:
const { chat, chatSync } = require('chatglmjs');
const { resolve } = require('path');
chat({
model_bin_path: resolve(__dirname, '../llms/chatglm3-6b.q4_0.bin'),
prompt: '你好',
onmessage(msg) {
process.stdout.write(msg);
},
});
上面就是chatglmjs的最简单用法,当然,你还可以结合express创建一个服务,前端发一个ajax请求,由express调用上面这段代码来响应ajax,这样就可以在前端浏览器里面实现一个大模型应用了。
好了,今天就分享到这里,没必要为了凑字数搞一堆高深的概念,相信有想法的同学很快就能按照本文介绍的方法完成本地LLM的接入。
项目地址:github.com/tangshuang/…
记得给个star哦
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。