尽管有了 GPU 加持,推理速度依然很慢,怎么搞?
流式输出!
相比全部生成后再输出,流式输出生成一句就播报一句,大大减少了用户的等待时间。
主流大模型推理 API 包括:
- OpenAI 格式:沿袭 ChatGPT 的云端 API,多用于线上模型;
- Ollama 格式:用于本地部署的大模型推理。
本次分享,将带大家实战:OpenAI 和 Ollma 下的大模型流式输出。
1. OpenAI 流式输出
当前大部分大模型的推理 API 都兼容了 OpenAI 格式。
和非流式输出相比,只需新增一个参数:stream=True
。
不过,为了方便后续进行语音合成,我们需要对大模型的流式输出进行一番处理!
首先,定义一个标点符号列表:punct_list = [‘。’, ‘!’, ‘?’],遇到这里的标点,则立即输出。
具体实现如下,供参考:
上述代码用 yield 关键字定义一个生成器函数。
2. Ollama 流式输出
Ollama 的 API 和 OpenAI 略有区别,但核心逻辑是一样的,直接上代码:
调用时,可以用 for 循环来迭代生成器对象,每次迭代,生成器会执行到下一个 yield 语句,并返回当前值:
输出效果如下:
天空之所以呈现蓝色,主要是因为大气中的气体分子和其他细小颗粒对太阳光的散射作用。
这种现象被称为瑞利散射(Rayleigh scattering),由英国物理学家威廉·汉斯·瑞利爵士在19世纪末发现。
当阳光进入地球的大气层时,其中的各种颜色(不同波长)的光线都会受到气体分子、水蒸气和尘埃等微粒的影响。
然而,这些微粒对较短波长的光(如蓝色和紫色)散射得更为强烈。
由于人眼对蓝光比紫光敏感得多,所以我们看到的是天空呈蓝色。实际上,太阳本身发出的白光包含了所有颜色的光。
当阳光进入大气层时,其中的蓝色光线因散射作用被分散到各个方向,在我们看来,天空就呈现出蓝色。
而太阳和天空在白天看起来呈现不同的颜色(例如:日出和日落时天边的橙红色或紫色),则是由于此时光线需要穿过更多的大气层,蓝光几乎都被散射掉了,只有红、橙等较长波长的光线能够直接到达我们的眼睛。
总之,正是这种自然现象造成了天空呈现出蓝色。
实测:在 Jetson Orin Nano 上使用本地部署的 qwen2.5:7b,流式输出 + 语音合成播报,体验基本无延迟!
写在最后
本文带大家实操了大模型流式输出,在 OpenAI 和 Ollama API 中的具体实现。
如果对你有帮助,欢迎点赞收藏备用。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。