动手实现8Bit量化Transformer

PyTorch的量化是一种减少模型大小和加速推理的技术,通常用于部署模型到资源受限的设备,如手机或嵌入式设备。以下是一个基本的步骤来实现PyTorch中Transformer模型的量化。

图片

如图我们可以将张量量化到8,16比特甚至更低加速推理和节省内存。

注意:这里以torch.quantization模块为基础,这是一个PyTorch提供的专门用于量化的模块。

准备模型:首先,你需要有一个已经训练好的Transformer模型。这个模型应该使用PyTorch构建,并且需要是torch.nn.Module的子类。

import torch

import torch.nn as nn

from transformers import TransformerModel # 假设你有一个预定义的TransformerModel

# 初始化模型

model = TransformerModel()

model.eval() # 确保模型在评估模式下

准备数据:你需要一些代表输入数据的数据集。这些数据将用于校准量化器,以便更好地表示模型权重的分布。

# 假设你有一个预定义的数据加载器

data_loader = DataLoader(…)

# 获取一批数据用于校准

input_data = next(iter(data_loader))[0]

模型融合:在量化之前,你可能需要将某些操作融合到一起,以提高推理速度。PyTorch的量化工具提供了这样的功能。

torch.quantization.prepare(model, inplace=True)

# 使用输入数据进行前向传播以插入量化操作

model(input_data)

torch.quantization.convert(model, inplace=True)

模型量化:现在,你可以使用torch.quantization模块来量化模型。这通常涉及将浮点权重转换为固定点表示,并可能涉及一些额外的优化步骤。

# 对于某些模型,可能需要手动指定量化配置

qconfig = torch.quantization.get_default_qconfig(‘fbgemm’)

torch.quantization.prepare_qat(model, qconfig_spec={}, inplace=True)

# 使用输入数据进行前向传播以收集统计数据

model(input_data)

# 转换模型以进行量化推理

torch.quantization.convert(model.eval(), inplace=True)

保存和加载量化模型:最后,你可以保存量化后的模型,并在需要时加载它进行推理。

torch.save(model.state_dict(), ‘quantized_model.pth’)

# 加载量化模型

quantized_model = TransformerModel()

quantized_model.load_state_dict(torch.load(‘quantized_model.pth’))

quantized_model.eval()

请注意,上述步骤是一个基本的指南,并且可能需要根据你的具体模型和需求进行调整。例如,不同的模型可能需要不同的量化配置,或者可能需要在量化之前进行额外的优化步骤。此外,不同的硬件平台可能需要不同的量化方法(例如,不同的qconfig)。因此,在实现量化时,最好参考PyTorch的官方文档和相关的最佳实践指南。

在PyTorch中,设置8位量化通常意味着使用8位整数来表示模型的权重和激活。为了设置8位量化配置(qconfig),你需要选择适当的量化策略和观察者(observers)。PyTorch的量化API提供了几种默认的qconfig选项,你可以直接使用它们,或者根据需要进行自定义。

下面是如何设置8位量化配置的一些示例:

使用默认的8位量化配置

PyTorch为不同的后端提供了默认的qconfig。例如,对于使用FBGEMM后端的模型,你可以使用以下配置:

python
复制
import torch
import torch.quantization

# 使用FBGEMM后端的默认8位量化配置
qconfig = torch.quantization.get_default_qconfig(‘fbgemm’)

自定义8位量化配置

如果你需要更细粒度的控制,你可以自定义qconfig。例如,你可以指定特定的量化类型和观察者:

import torch
import torch.quantization

# 自定义8位量化配置
class MyCustom8BitQConfig(torch.quantization.QConfig):
def init(self):
super(MyCustom8BitQConfig, self).init(
activation=torch.quantization.MinMaxObserver,
weight=torch.quantization.PerChannelMinMaxObserver
)

qconfig = MyCustom8BitQConfig()

在这个例子中,MyCustom8BitQConfig继承自torch.quantization.QConfig,并指定了激活使用MinMaxObserver,权重使用PerChannelMinMaxObserver。这些观察者会在量化过程中收集数据范围,以便确定最佳的量化参数。

应用量化配置

一旦你定义了qconfig,你需要将其应用到你的模型中。这通常通过torch.quantization.prepare函数来完成,它准备模型进行量化。然后,你可以通过前向传播一些数据来收集统计信息,最后使用torch.quantization.convert函数将模型转换为量化模型。

# 准备模型进行量化
model.qconfig = qconfig
torch.quantization.prepare(model, inplace=True)

# 前向传播以收集统计信息
# … 这里应该包含模型的前向传播代码,使用训练或校准数据集 …

# 转换模型为量化模型
torch.quantization.convert(model, inplace=True)

请注意,正确的量化配置取决于你的模型架构、数据集和任务。在量化之前,建议仔细研究你的模型和数据,并参考PyTorch的文档和最佳实践来选择适当的量化配置。此外,量化可能会导致模型精度下降,因此在实际部署之前,请确保充分验证量化模型的性能。

要在PyTorch中注册自定义的8比特量化器到其量化API,你需要遵循PyTorch的量化框架。这通常涉及到创建自定义的量化函数、反量化函数以及相应的量化模块,并将它们注册到PyTorch的量化函数中。以下是一个简化版的例子,展示如何创建和注册自定义的8比特量化器。

首先,你需要定义量化函数和反量化函数。然后,你可以创建一个自定义的量化模块,并在PyTorch的量化API中注册它。

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.quantization as tq

# 自定义量化函数
def custom_quantize_per_tensor(x, scale, zero_point, dtype=torch.quint8):
q_x = torch.zeros_like(x, dtype=dtype)
q_x = torch.round(x / scale + zero_point)
q_x.clamp_(0, 255)
return q_x

# 自定义反量化函数
def custom_dequantize(q_x, scale, zero_point):
return scale * (q_x.float() - zero_point)

# 自定义量化模块
class Custom8BitQuantize(nn.Module):
def init(self, scale, zero_point):
super(Custom8BitQuantize, self).init()
self.scale = scale
self.zero_point = zero_point

def forward(self, x):
return custom_quantize_per_tensor(x, self.scale, self.zero_point)

# 自定义反量化模块
class Custom8BitDequantize(nn.Module):
def init(self, scale, zero_point):
super(Custom8BitDequantize, self).init()
self.scale = scale
self.zero_point = zero_point

def forward(self, q_x):
return custom_dequantize(q_x, self.scale, self.zero_point)

# 注册自定义量化模块
def register_custom_8bit_quantization():
# 假设我们有一个观察器,用于收集统计数据以计算scale和zero_point
# 这里为了简化,我们假设已经有了scale和zero_point
scale = 0.01
zero_point = 128

# 注册量化函数
tq.register_quantized_operation(
torch.ops.quantized.linear,
# 这里需要提供量化前的操作
lambda weight, bias, scale, zero_point: (
Custom8BitQuantize(scale, zero_point)(weight),
bias,
scale,
zero_point
)
)

# 注册反量化函数
tq.register_per_tensor_affine_quantized_op(
torch.ops.quantized.linear_relu,
Custom8BitDequantize(scale, zero_point)
)

# 使用自定义量化模块
# 在实际应用中,你会在模型训练之后使用PyTorch的量化API进行量化
# 这里只是演示如何注册自定义量化器

# 假设你有一个简单的模型
class SimpleModel(nn.Module):
def init(self):
super(SimpleModel, self).init()
self.fc = nn.Linear(10, 10)

def forward(self, x):
return self.fc(x)

# 实例化模型
model = SimpleModel()

# 注册自定义量化函数
register_custom_8bit_quantization()

# 准备模型进行量化
# 注意:这里只是注册了量化函数,并没有实际量化模型
# 实际量化过程会涉及插入量化观察器、进行前向传播收集统计数据、
# 计算scale和zero_point、转换模型等操作

# 在这里,你可以使用PyTorch的量化API来准备和转换模型
# 例如:
# prepared_model = tq.prepare(model)
# calibrated_model = tq.convert(prepared_model, inplace=True)

# 由于实际量化过程涉及多个步骤,这里只是展示了如何注册自定义量化函数
# 完整的量化流程需要按照PyTorch的量化指南进行

请注意,上述代码是简化的示例,用于说明如何注册自定义量化函数。在实际应用中,你需要根据PyTorch的量化指南进行完整的量化流程,包括准备模型、插入观察器、前向传播收集统计数据、计算量化参数、转换模型等步骤。

此外,你可能还需要考虑硬件支持、量化噪声、性能影响等因素,以确保自定义量化器在实际应用中具有良好的效果和性能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值