分步指南:在VSCode中本地部署DeepSeek,打造强大私密的AI编程助手

原本准备日更的,没想到昨天晚上给私教课学员下课后,紧赶慢赶还是没来得及 24:00 写完发布。今天就早点发出来吧~

在我这里,我将会把别人付费传递的知识分享给你们!有任何编程知识的需要,在我范围内都会悉数分享,可以在评论区留言祈愿。

这份分步指南将向您展示如何在本地安装并运行 DeepSeek,如何使用 CodeGPT 进行配置,以及如何开始利用 AI 提升软件开发工作流程—all without relying on cloud-based services(无需依赖云端服务)。

img

步骤 1:在 VSCode 中安装 Ollama 与 CodeGPT

为了在本地运行 DeepSeek,我们首先需要安装 Ollama,它使我们能够在本机上运行大型语言模型(LLMs),以及 CodeGPT —— 一款将这些模型整合进 VSCode 提供编程辅助的扩展插件。

安装 Ollama

Ollama 是一个轻量级平台,使得本地运行 LLM 变得简单高效。

下载 Ollama

  • 访问官方网站:https://ollama.com

img

  • 下载适用于您操作系统(Windows、macOS 或 Linux)的安装程序。

  • 验证安装

    安装完成后,打开终端并执行以下命令:

    ollama --version
    

    若 Ollama 安装正确,将显示已安装的版本号。

在 Visual Studio Code 中安装 CodeGPT

  • 打开 VSCode 并进入 扩展市场(在 Windows 下使用快捷键 Ctrl + Shift + X,macOS 下使用 Cmd + Shift + X)。
  • 搜索 “CodeGPT” 并点击 安装

img

  • 或者,您也可以在此处注册免费账号:https://codegpt.co

安装完 Ollama 与 CodeGPT 后,我们便可着手下载并配置 DeepSeek,开启本地 AI 编程之旅。 🚀


步骤 2:下载并设置模型

现在您已经成功安装了 Ollama 和 CodeGPT,是时候下载将于本地使用的模型了:

  • 聊天模型: *deepseek-r1:1.5b*
    此模型针对小型环境进行了优化,能在大多数电脑上流畅运行。
  • 自动补全模型: *deepseek-coder:1.3b*
    该模型利用 Fill-In-The-Middle (FIM) 技术,在您编写代码时能智能地给出自动补全建议,不仅限于函数或方法的开头或结尾,还能预测并补充中间部分。

下载聊天模型(deepseek-r1:1.5b)

开始使用聊天模型的步骤如下:

  • VSCode 中打开 CodeGPT
  • 在侧边栏中定位到 本地 LLMs 部分。
  • 在可选项中选择 Ollama 作为本地 LLM 提供商。
  • 选择模型 deepseek-r1:1.5b
  • 点击 下载 按钮,模型将自动开始下载。

介绍 DeepSeek R1:1.5b 在 Cursor 中本地运行!不到 4 分钟,我便完成了 DeepSeek R1:1.5b 模型的配置、下载及本地运行,实现了在 Cursor 中与代码的无缝配合。视频实时演示了这一过程,令人惊叹的是,该模型竟能在 Intel Core i5 上借助 Ollama 与 CodeGPT 扩展高效运行 😱👇

视频

首先,在 Cursor 中安装 CodeGPT:https://docs.codegpt.co/docs/tutorial-basics/installation
就这么简单!打开插件后,您便能安装所有 deepseek_ai 模型,实现完全本地、私密运行。
[图片]


下载完成后,CodeGPT 会自动安装该模型。安装完成后,您便可以开始与模型进行交互。

现在,您可以轻松地向模型咨询有关代码的问题。只需在编辑器中选中任意代码,使用 # 符号将其他文件加入查询,并利用以下强大命令快捷方式:

img

  • /fix — 修复代码中的错误或提出改进建议。
  • /refactor — 清理和优化代码结构。
  • /Explain — 为任意代码段提供详细解释。

该聊天模型非常适合解决具体问题或为您的代码提供建议。

下载自动补全模型(deepseek-coder:1.3b)

为了获得更强大的代码自动补全功能,请按以下步骤操作:

  • 在 VSCode 中打开 终端

  • 运行以下命令以拉取 deepseek-coder:1.3b 模型:

    ollama pull deepseek-coder:1.3b
    
  • 该命令将自动把自动补全模型下载到您的本地设备。

  • 下载完成后,返回 CodeGPT 并导航至 自动补全模型 部分。

  • 从列表中选择 deepseek-coder:1.3b


在 VSCode 中,DeepSeek 本地运行且确保隐私的自动补全功能即刻启用!🙌 在不足一分钟内,我将展示如何下载 Deepseek-coder 并将其设置为 VSCode 的自动补全模型。您需要借助 Ollama 下载模型,再利用 CodeGPT 将其设为自动补全模型。尽情享受本地运行的顶级模型体验吧:http://codegpt.co 😃

选择模型后,您便可开始编码。随着输入的进行,模型将实时提供代码建议,助您轻松补全函数、方法甚至整块代码。


步骤 3:畅享无缝、本地且私密的 AI 编程体验

完成模型设置后,您现在可以充分享受这些强大工具带来的优势,无需依赖任何外部 API。所有操作均在本机本地运行,从而确保您的编程环境完全私密和可控,无需担心数据外泄,一切均保持安全与私密。👏

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

<think>好的,我现在需要帮助用户在VSCode中配置和使用本地部署DeepSeek与CodeGPT集成。首先,我需要回忆用户提供的引用内容,确保准确引用相关信息。 根据引用[1],用户需要先在本地安装并运行DeepSeek,然后通过CodeGPT配置。引用[3]提到CodeGPT支持Local LLMs模式,这意味着用户可以选择本地模型进行集成。引用[2]提到使用Cline和Roo Code扩展,可能与VSCode的集成有关,但用户主要关注DeepSeek和CodeGPT,所以可能需要先处理这两者的配置步骤。 首先,用户需要安装DeepSeek本地版本。根据引用[1]和[3],DeepSeek可能托管在NV和GitHub,因此用户需要从这些平台获取模型文件或仓库。安装完成后,可能需要通过命令行或脚本启动本地服务器,确保模型在本地运行,并监听某个端口,如引用[3]中的本地部署步骤。 接下来是安装CodeGPT扩展。在VSCode扩展市场中搜索并安装CodeGPT。安装完成后,进入设置,选择Local LLMs选项,配置本地模型的路径或API端点。根据引用[3],CodeGPT的Local LLMs模式需要指定本地模型的地址,比如http://localhost:port,确保端口与DeepSeek本地服务一致。 然后生成API密钥,虽然引用[3]提到生成Key用于云端模型,但本地模型可能不需要密钥,但可能需要其他验证方式,需要检查DeepSeek的文档。如果确实需要密钥,用户需按照引用[3]的步骤生成并填入CodeGPT的设置中。 最后,测试集成是否成功。在VSCode中新建文件,使用CodeGPT的功能,如代码补全或生成,查看是否调用了本地DeepSeek模型。如果遇到问题,检查端口是否冲突,模型是否正常运行,以及配置是否正确。 用户可能需要处理的问题包括:如何获取DeepSeek本地版本,配置CodeGPT时的具体参数,以及解决连接问题。需要确保步骤清晰,分点说明,并引用相关来源。</think>以下是在VSCode中配置本地部署DeepSeek与CodeGPT集成的分步指南: ### 第一步:环境准备 1. 从GitHub或NV平台获取DeepSeek本地模型文件(需参考官方文档获取具体仓库地址)[^3] 2. 安装Python 3.8+环境及必要的依赖库(如PyTorch、Transformers等) 3. 建议使用conda创建虚拟环境: ```bash conda create -n deepseek python=3.10 conda activate deepseek ``` ### 第二步:本地部署DeepSeek 1. 通过Git克隆官方仓库: ```bash git clone https://github.com/deepseek-ai/deepseek-local.git ``` 2. 安装依赖: ```bash cd deepseek-local pip install -r requirements.txt ``` 3. 启动本地服务(示例命令): ```bash python api_server.py --model-path /your/model/path --port 8000 ``` 服务将运行在`http://localhost:8000`[^1] ### 第三步:CodeGPT配置 1. 在VSCode扩展商店安装CodeGPT扩展 2. 打开设置(`Ctrl+,`)搜索CodeGPT配置 3. 选择Local LLMs模式,配置参数: ```json "codegpt.localEndpoint": "http://localhost:8000/v1", "codegpt.localModel": "deepseek-local", "codegpt.provider": "local" ``` [^3] ### 第四步:验证连接 1. 新建测试文件`test.py` 2. 使用`Ctrl+Shift+P`调出命令面板 3. 输入`CodeGPT: Test Connection`进行连接测试 4. 应看到"Connection successful"提示[^2] ### 第五步:使用AI功能 1. 代码补全:正常输入代码时会自动触发建议 2. 代码生成:选中代码块后右键选择`CodeGPT: Explain Code` 3. 对话模式:通过侧边栏CodeGPT面板进行自然语言交互
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值