粉笔大事件!首个职教行业垂域大模型问世

7月12日,粉笔在北京举办“粉笔AI智教无界”发布会,正式推出自主研发的首个专注于职教行业的垂域大模型,并宣布即将上线粉笔AI老师“粉笔头”,为用户提供更加高效的备考陪伴,引领职业教育进入AI全面赋能的4.0时代。

图片

粉笔CEO张小龙亮相发布会现场 本报记者 董添/摄

粉笔CEO张小龙表示,科技才是效率提升的“王炸”。粉笔在ChatGPT问世之前,就一直有一支高水平的人工智能算法的团队。“在新技术出来之后,我们非常顺理成章地扩大了这个团队,在人员和算力的投入上都非常坚决。”张小龙说。

提升辅导效率

设想一个场景:正在准备公务员考试的你被一道难题卡住许久,陷入迷茫之中。这时,一位老师出现了,不仅可以给你解答疑问,还能给你制定计划,督促你完成任务,甚至能7*24小时地陪伴着你,共同渡过备考的孤单时刻……这不是天马行空的期待,而是真实落地的场景。

作为首个聚焦于职教领域的AI大模型产品,粉笔AI老师备受关注。据粉笔方面介绍,粉笔AI老师具备个性化学习规划及指导、学习成果检测及辅导、题目答疑及其他做题辅导、知识点答疑讲解、考情答疑及报考指导、督学提醒和解压疏导共七大功能,在学员学习全流程给予指导和陪伴。AI技术应用可以有效为辅导老师提高服务效率。2021年2月,平均一位辅导老师同期可以服务40人左右。目前,一位老师同期最高可服务150人,效率提升275%。

粉笔CEO张小龙表示,大模型短期可能会带来就业等问题,但中长期会创造出不同的就业种类和就业岗位,让人的生活变得更有趣、更有意义。也建议研发人员不要都聚集到通用大模型中,可以多一些针对具体领域的模型,早日实现商业化,为中国社会、经济、就业作出应有的贡献。

2024年被认为是大模型的应用爆发元年,各家大模型加速进入“落地即应用”的时代。在过去的“大模型元年”中,通用大模型无疑是市场风口。教育行业作为AI应用的前沿阵地,不断上演“百模大战”,通用大模型如雨后春笋般层出不穷。而粉笔为何选择发力垂域大模型?

对此,粉笔CTO陈建华表示,虽然通用大模型在多个领域展现了潜力,但在特定场景中,其难以满足用户的真实需求。粉笔采取双重策略:一是依托多年教研与独有数据资源,通过RAG技术(检索增强生成),解决了公考领域专业回答的难题;二是采用分治策略,将复杂问题拆解为简单任务由模型处理。经过不断的数据标注和算法优化,目前粉笔大模型意图识别准确率可以达到98%以上。

“基于粉笔独有的数据、教研的长期积累和对于用户的深度洞察,我们得出判断,垂域模型可以在公考领域实现比通用大模型更好的效果。”陈建华称,开发垂域大模型,还意味着能用更小的模型、更低的成本,实现更好的效果。

不断加码科技投入

艾瑞咨询《2024年AIGC+教育行业报告》显示,职业培训赛道占2023年全球AIGC+教育投融资的24.4%,是AI技术应用的新热点。随着年轻人对公务员职业的追捧以及国家对公务员队伍素质要求的提升,相关培训赛道吸引了大量投资。在此背景下,众多教育企业纷纷推出职教及公考培训AI产品。

作为一家从成立之初就自带互联网基因的企业,粉笔始终致力于将前沿科技与教育实践深度融合。数据显示,粉笔不断加码科技投入,2023年研发投入达2.51亿元,同比增加近30%。AI老师的推出,是粉笔在“科技+教育”领域持续探索的结果。目前,粉笔已将AI技术应用于教研、教学、运营等各个环节。

对于转型路径,粉笔介绍,公司一直走在行业转型发展的前列。从依赖线下教学的1.0阶段起,粉笔不断整合优势资源,探索了线上课程的2.0阶段与线下、线上相融合的3.0阶段。如今,凭借AI技术的深入应用与持续升级,粉笔正为用户提供更加智能化、时效性强的服务体验,逐渐迈入4.0阶段。

“我一直坚持认为,最先进的技术一定要和具体行业优秀人才和经验深入有机结合,让最优秀人才的智慧通过技术和产品方式呈现和沉淀,才能产生最大的价值。”张小龙表示。

对于未来发展,粉笔表示,依托垂域大模型的强大支撑,将进一步为用户提供真正有价值的产品和服务。未来,粉笔将上线申论AI老师、面试AI老师等产品,通过启发式答疑、模拟实战等多种方式,为学员提供更加全面、深入的学习支持。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值