国内本地部署FastGPT知识库(FastGPT+ChatGLM3+m3e),搭建属于自己的“备忘录”

  • 最近想弄一个自己的菜谱GPT,记录下自己的美食配方,要不这些配方在手机备忘录中比较杂乱,然后就找了些教程整合了一下才弄出来,期间遇到一些报错弄了会才解决掉,为了方便大家以后少走弯路,就写了这篇文章。希望每个人都能拥有自己的智能“备忘录”。
  • 想体验下本地GPT的小白朋友也可以玩玩(本教程在国内的环境也可以搭建,文章中有🪄的是需要魔法的,不过我也放上了平替)
  • 操作系统: -Windows 11 23H2 -GPU : 1060 6G

一、开启WSL

  1. 程序和功能——启用或者关闭windows功能——(适用于Linux的windows子系统、虚拟机平台)

在这里插入图片描述

  1. 设置wsl

以管理员身份打开cmd

在这里插入图片描述

wsl --set-default-version 2
wsl --update --web-download

二、Ubuntu 下载

方法一:Microsoft Store 微软商店

下载Ubuntu

在这里插入图片描述

方法二🪄:命令行

wsl -l -o
wsl --install -d Ubuntu

在这里插入图片描述

三、docker下载:

1. 下载Docker桌面版

官网🪄www.docker.com

GitHub:github.com/tech-shrimp…

ps:可在Microsoft Store 微软商店 下载watt加速GitHub

2. 安装Docker

Docker桌面版默认安装在C盘

下载Docker桌面版(安装到其他盘的命令):

start /w "" "Docker Desktop Installer.exe" install --installation-dir=D:\Docker

3. 查找Docker镜像:

官网🪄hub.docker.com/

docker.fxxk.dedyn.io/

4. 修改Docker镜像源:

Settings -> Docker Engine

json代码解读复制代码{
    "registry-mirrors": [
        "https://docker.m.daocloud.io",
        "https://docker.1panel.live",
        "https://hub.rat.dev"
    ]
}

在这里插入图片描述

5. 开启WSL integration

Settings -> Resources -> WSL integration

在这里插入图片描述

四、docker-compose下载(桌面版不用下载):

GitHub:github.com/docker/comp…

在这里插入图片描述

Linux中下载安装docker-compose

wsl中下载安装命令:

sudo curl -L "https://github.com/docker/compose/releases/download/v2.29.3/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

查看安装版本命令: docker-compose –version

五、Fastgpt下载

技术文档:doc.tryfastgpt.ai/docs/develo…

0. 修改本机hosts文件

在这里插入图片描述

在这里插入图片描述

路径:C:\Windows\System32\drivers\etc

保存不了的另外存在桌面后再覆盖掉原来的文件

查询网站:www.ipaddress.com/

末尾添加 185.199.108.133 raw.githubusercontent.com

【否则后面的操作会导致下面的报错】

在这里插入图片描述

1. 安装命令:

ruby代码解读复制代码    mkdir fastgpt
    cd fastgpt
    curl -O https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json
    # pgvector 版本(测试推荐,简单快捷)
    curl -o docker-compose.yml https://raw.githubusercontent.com/labring/FastGPT/main/files/docker/docker-compose-pgvector.yml

2. 启动容器

bash代码解读复制代码# 启动容器
docker-compose up -d
# 等待10s,OneAPI第一次总是要重启几次才能连上Mysql
sleep 10
# 重启一次oneapi(由于OneAPI的默认Key有点问题,不重启的话会提示找不到渠道,临时手动重启一次解决,等待作者修复)
docker restart oneapi

六、ChatGLM3下载

技术文档:zhipu-ai.feishu.cn/wiki/HIj5wV…

github.com/THUDM/ChatG…

懒人包下载:

ruby代码解读复制代码以下懒人包和教程由 非官方开发者 十字鱼 友情提供
视频教程:https://www.bilibili.com/video/BV1c34y1w75K

百度网盘链接:https://pan.baidu.com/s/1fHElFanrdK9Y-pTpeY_azg
提取码:glut

七、M3E下载

1. Docker镜像拉取

原镜像:docker pull stawky/m3e-large-api:latest

我的阿里云:docker pull crpi-lttoy839cc8pgssa.cn-heyuan.personal.cr.aliyuncs.com/cscai/m3e-large-api

2. 运行容器

bash代码解读复制代码docker images
# 重命名镜像
docker tag crpi-lttoy839cc8pgssa.cn-heyuan.personal.cr.aliyuncs.com/cscai/m3e-large-api:latest stawky/m3e-large-api:latest
# 删除命名长的镜像
docker rmi crpi-lttoy839cc8pgssa.cn-heyuan.personal.cr.aliyuncs.com/cscai/m3e-large-api:latest

#查看网络 
docker network ls
# GPU模式启动,并把m3e加载到fastgpt同一个网络
docker run -d -p 6008:6008 --gpus all --name m3e --network fastgpt_fastgpt stawky/m3e-large-api
# CPU模式启动,并把m3e加载到fastgpt同一个网络
docker run -d -p 6008:6008 --name m3e --network fastgpt_fastgpt stawky/m3e-large-api
#【记住这起的名字】

八、配置

1. oneapi配置

1.1 登录

本机地址:http://localhost:3001/

oneapi登录账号:root 默认密码:123456

在这里插入图片描述

1.2 配置ChatGLM3
① 懒人包中启动api

在这里插入图片描述

② 进入渠道页面——点击添加新的渠道

在这里插入图片描述

③ 填入渠道信息
bash代码解读复制代码# Base URL(ip替换为本机IP)
http://ip:8000

# 名称
ChatGLM3

# 模型(先点击“清除所有模型”)
ChatGLM3

# 密钥
“空格”

在这里插入图片描述

④ 测试

等待ChatGLM3启动成功后点击“测试”,右上角会有测试结果。

在这里插入图片描述

在这里插入图片描述

1.3 配置渠道m3e
① 添加新的渠道
bash代码解读复制代码# Base URL(m3e为你上面记住的名字,相当于域名)
http://m3e:6008

# 名称
m3e

# 模型(先点击“清除所有模型”)
m3e

# 密钥
sk-aaabbbcccdddeeefffggghhhiiijjjkkk

在这里插入图片描述

④ 测试

在这里插入图片描述

1.4 配置令牌
① 添加新的令牌

名称随便,永不过期,无限额度

在这里插入图片描述

② 复制令牌

在这里插入图片描述

令牌格式:app.nextchat.dev/#/?settings…

复制key部分:sk-TCH2nzGlJvudk446295e8eFb111c453e8a3486E93493CeE6

2. 修改docker-compose.yml

位置: \wsl.localhost\Ubuntu\home\csc\fastgpt

2.1 修改CHAT_API_KEY
ini代码解读复制代码# AI模型的API地址哦。务必加 /v1。这里默认填写了OneApi的访问地址。
- OPENAI_BASE_URL=http://oneapi:3000/v1
# AI模型的API Key。(这里默认填写了OneAPI的快速默认key,测试通后,务必及时修改)
- CHAT_API_KEY=sk-TCH2nzGlJvudk446295e8eFb111c453e8a3486E93493CeE6

3. 修改config.json

位置: \wsl.localhost\Ubuntu\home\csc\fastgpt

js代码解读复制代码    {
      "model": "ChatGLM3", // 模型名(对应OneAPI中渠道的模型名)
      "name": "ChatGLM3", // 别名
      "avatar": "/imgs/model/openai.svg", // 模型的logo
      "maxContext": 4000, // 最大上下文
      "maxResponse": 4000, // 最大回复
      "quoteMaxToken": 2000, // 最大引用内容
      "maxTemperature": 1, // 最大温度
      "charsPointsPrice": 0,  // n积分/1k token(商业版)
      "censor": false, // 是否开启敏感校验(商业版)
      "vision": false, // 是否支持图片输入
      "datasetProcess": true, // 是否设置为知识库处理模型(QA),务必保证至少有一个为true,否则知识库会报错
      "usedInClassify": true, // 是否用于问题分类(务必保证至少有一个为true)
      "usedInExtractFields": true, // 是否用于内容提取(务必保证至少有一个为true)
      "usedInToolCall": true, // 是否用于工具调用(务必保证至少有一个为true)
      "usedInQueryExtension": true, // 是否用于问题优化(务必保证至少有一个为true)
      "toolChoice": false, // 是否支持工具选择(分类,内容提取,工具调用会用到。目前只有gpt支持)
      "functionCall": false, // 是否支持函数调用(分类,内容提取,工具调用会用到。会优先使用 toolChoice,如果为false,则使用 functionCall,如果仍为 false,则使用提示词模式)
      "customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型
      "customExtractPrompt": "", // 自定义内容提取提示词
      "defaultSystemChatPrompt": "", // 对话默认携带的系统提示词
      "defaultConfig":{}  // 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)
    }

    {
      "model": "m3e", // 模型名(与OneAPI对应)
      "name": "m3e", // 模型展示名
      "avatar": "/imgs/model/openai.svg", // logo
      "charsPointsPrice": 0, // n积分/1k token
      "defaultToken": 500, // 默认文本分割时候的 token
      "maxToken": 1800, // 最大 token
      "weight": 100, // 优先训练权重
      "defaultConfig":{},  // 自定义额外参数。例如,如果希望使用 embedding3-large 的话,可以传入 dimensions:1024,来返回1024维度的向量。(目前必须小于1536维度)
      "dbConfig": {}, // 存储时的额外参数(非对称向量模型时候需要用到)
      "queryConfig": {} // 参训时的额外参数
    }

修改后重启容器:

docker-compose down
docker-compose up -d

九、FastGTP配置与使用

1. 登录

本机地址:http://localhost:3000

账号:root 密码:1234

在这里插入图片描述

2. 添加知识库

2.1 创建知识库

在这里插入图片描述

在这里插入图片描述

2.2 导入数据集

在这里插入图片描述

3. 添加应用

3.1 创建应用

在这里插入图片描述

3.2 配置应用与关联知识库

在这里插入图片描述

4. 发布与聊天

4.1 未添加知识库的对话

在这里插入图片描述

4.2 添加知识库后的对话

在这里插入图片描述

4.3 高级玩法

FastGPT运用的是MarkDown,这就可以用MarkDown来让他回复图片等一系列用法。

1.运用MakerDown语法配置知识库

在这里插入图片描述

2.回复效果

在这里插入图片描述

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值