Python批量采集亚马逊商品数据 (含完整源代码)

本文介绍了如何使用Python 3.8和PyCharm进行亚马逊商品数据的批量采集。通过requests和parsel库,详细讲解了网络请求、数据解析和保存过程,并涉及线程池的使用,帮助读者理解爬虫基本流程、非结构化数据解析及csv数据保存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

嗨喽 ! 大家好吖,这里是魔王~

亚马逊公司,是美国最大的一家网络电子商务公司,位于华盛顿州的西雅图
是网络上最早开始经营电子商务的公司之一,亚马逊成立于1994年
今天教大家用Python批量采集亚马逊平台商品数据
地址:https://www.amazon.cn/

本次目的:

Python批量采集亚马逊商品数据

知识点:

  1. 爬虫基本流程
  2. 非结构化数据解析
  3. csv数据保存
  4. 线程池的使用

开发环境]:

  • python 3.8
  • pycharm
  • requests >>> pip install requests
  • parsel >>> pip install parsel

爬虫(python):

批量采集网络数据工具(视频 文本 图片 音频)

本质:

模仿 客户端(浏览器) 发送网络请求

基本爬虫思路

网站思路分析:

找到数据来源 https://www.amazon.cn/s?rh=n%3A106200071&fs=true&ref=lp_106200071_sar

代码实现:

  1. 发送网络请求 requests 第三方模块 发送请求
  2. 获取数据
  3. 解析数据 parsel ? 帮助解析数据 模块 第三方模块
  4. 保存数据
  5. 多页爬取
  6. 代码封装成函数 使用线程池爬取

编写代码

导入模块

import requests     # 第三方模块
import parsel       # 解析数据模块
import csv

加入伪装

headers = {
   
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9',
    'Accept-Encoding': 'gzip, deflate, br',
    'Accept-Language': 'zh-CN,zh;q=0.9',
    'Cache-Control': 'max-age=0',
    'Connection': 'keep-alive',
    'Cookie': 'session-id=460-4132650-8765807; i18n-prefs=CNY; ubid-acbcn=457-7935785-7667244; session-token=Laa3G6hMbBpdAIPYwutQqKxkSISU8fb2jTr0JiczqkeVISvqn2eqjw4N0BAbYfmy8+/S1B3kLvDb9ImsBnbwQHU6JG8EToefDoi69keaL1F6ExYDXCSqFF0hC4fkGAFJlNYYNqfVlvj5ewTVJP1pYgL4JG2tjM5O2Uk7ufiL9s7gvidAMaUj1QtBW5puqmoG; csm-hit=adb:adblk_no&t:1645531896484&tb:s-VMQ97YXPSC1MBACTN14J|1645531895768; session-id-time=2082729601l',
    'downlink': '10',
    'ect': '4g',
    'Host': 'www.amazon.cn',
    'Referer': 'https://www.amazon.cn/b/ref=s9_acss_bw_cg_pccateg_2a1_w?node=106200071&pf_rd_m=A1U5RCOVU0NYF2&pf_rd_s=merchandised-search-2&pf_rd_r=KE929JDVF8QRWWDQCWC0&pf_rd_t=101&pf_rd_p=cdcd9a0d-d7cf-4dab-80db-2b7d63266973&pf_rd_i=42689071',
    'rtt': '150',
    'sec-ch-ua': '" Not A;Brand";v="99", "Chromium";v="98", "Google Chrome";v="98"',
    'sec-ch-ua-mobile': '?0',
    'sec-ch-ua-platform': '"Windows"',
    'Sec-
<think>嗯,用户想找一个处理半结构化和非结构化数据的整体解决方案,涉及采集、存储、计算分析和管理这些环节。我需要先理解半结构化和非结构化数据的区别,以及它们的处理难点在哪里。 首先,根据引用[1]和[2],非结构化数据比如文本、图像、视频,不像结构化数据那样有固定格式,传统数据库处理起来有困难。半结构化数据比如JSON、XML,有一定的结构但不固定。所以解决方案需要兼顾这两种数据类型。 数据采集方面,用户可能需要支持多种数据源的采集工具。引用[3]提到了亮数据Web Scraper和自定义数据集,可能可以推荐类似的数据采集工具,支持API、爬虫、流数据等。另外,数据中台的采集部分可能涉及算法,引用[4]提到数据采集需要高效接入,可能需要分布式采集框架。 存储方面,非结构化数据量大,传统关系数据库不行,引用[2]提到NoSQL或者扩展的关系数据库。可能需要对象存储如S3,结合HDFS或分布式数据库。半结构化数据可能用MongoDB或者Elasticsearch。 计算和分析部分,非结构化数据需要NLP、图像识别等技术,可能需要Spark、Flink这样的分布式计算框架,加上AI模型。半结构化数据可能需要ETL工具转换为结构化数据进行分析。 管理方面,元数据管理和数据治理是关键,需要统一的数据目录和血缘追踪。数据湖或数据中台架构可能适合整合这些数据。 整体解决方案可能需要结合数据湖和数据中台,使用混合存储,搭配ETL和AI工具。比如用Apache NiFi采集数据,存储到Hadoop或云存储,用Spark处理,分析时用机器学习库,管理上用数据目录工具。 还要考虑用户的实际应用场景,比如是否用于电商(引用[3]的例子)或者其他行业,可能需要不同的工具组合。另外,数据安全和合规性也是管理的一部分,需要权限控制和加密措施。 总结下来,解决方案需要覆盖采集的多样性、存储的可扩展性、计算的分布式和AI能力,以及统一的管理平台。可能需要分步骤说明每个环节的推荐技术和工具,并举例说明可能的架构。</think>### 分步解答:半结构化和非结构化数据处理整体解决方案 #### 一、数据采集 1. **非结构化数据采集** - 使用分布式爬虫框架(如Scrapy、Apache Nutch)抓取网页文本、图像、视频等数据[^3]。 - 通过日志采集工具(如Flume、Logstash)实时收集服务器日志、传感器数据流。 - 结合API接口获取社交媒体、物联网设备等非结构化数据流[^4]。 2. **半结构化数据采集** - 采用支持JSON/XML解析的ETL工具(如Apache NiFi、Talend),从API、消息队列(如Kafka)中提取数据。 - 使用轻量级数据库(如MongoDB)直接存储半结构化文档。 **示例技术栈** ```python # 使用Scrapy爬取网页非结构化数据示例 import scrapy class WebDataSpider(scrapy.Spider): name = 'web_data' start_urls = ['https://example.com'] def parse(self, response): yield { 'html_content': response.text, 'images': response.css('img::attr(src)').getall() } ``` --- #### 二、数据存储 1. **非结构化存储方案** - **对象存储**:使用Amazon S3、MinIO存储海量文件(如图片、视频)[^2]。 - **分布式文件系统**:HDFS适用于需要批量分析的场景。 - **NoSQL数据库**:Cassandra或HBase支持高吞吐量写入。 2. **半结构化存储方案** - **文档数据库**:MongoDB原生支持JSON存储和嵌套查询。 - **混合存储**:Elasticsearch实现文本检索与结构化字段过滤。 $$存储架构选择公式:\\ Cost = \alpha \cdot Volume + \beta \cdot QuerySpeed + \gamma \cdot Scalability$$ (需根据数据访问频率和成本平衡选择) --- #### 三、计算与分析 1. **非结构化数据分析** - **文本分析**:NLP工具(如Spark NLP)提取实体、情感分析[^1]。 - **图像/视频处理**:基于TensorFlow/PyTorch构建深度学习模型。 - **流式计算**:Flink实时处理日志或传感器数据流。 2. **半结构化数据分析** - **模式推断**:使用Apache Spark Schema Inference自动解析JSON/XML结构。 - **图计算**:Neo4j分析半结构化数据中的关联关系。 **示例代码:文本情感分析** ```python from transformers import pipeline nlp = pipeline("sentiment-analysis") result = nlp("数据中台解决方案显著提升处理效率") print(result) # 输出: [{'label': 'POSITIVE', 'score': 0.99}] ``` --- #### 四、数据管理 1. **元数据管理** - 使用Apache Atlas或Alation构建统一数据目录,记录数据血缘关系。 - 对非结构化数据添加标签(如文件类型、创建时间)。 2. **治理与安全** - 通过Ranger/Sentry实现细粒度权限控制。 - 对敏感数据(如医疗影像)进行加密存储。 --- #### 五、推荐架构组合 | 层级 | 开源方案 | 商业方案 | |------------|-----------------------------------|---------------------------| | 采集 | Apache NiFi + Scrapy | Informatica PowerCenter | | 存储 | MinIO + MongoDB + Elasticsearch | AWS S3 + Snowflake | | 计算 | Spark + Flink + TensorFlow | Databricks + AWS SageMaker| | 管理 | Apache Atlas + Ranger | Collibra + Talend | ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值