用Python采集电商平台商品数据进行可视化分析

本文介绍了如何使用Python进行电商平台商品数据的采集,通过分析数据包找出商品ID的规律,并展示了发送HTTP请求、解析数据、保存CSV文件的步骤。还涉及了防止反爬策略和数据可视化的基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

嗨喽~大家好呀,这里是魔王呐 ❤ ~!

环境使用:

  • python 3.8 解释器

  • pycharm 编辑器

模块使用:

第三方模块 需要安装

  • requests —> 发送 HTTP请求

内置模块 不需要安装

  • csv —> 数据处理中经常会用到的一种文件格式

第三方模块安装:

win + R 输入cmd 输入安装命令 pip install 模块名 (如果你觉得安装速度比较慢, 你可以切换国内镜像源)

python资料、源码、教程\福利皆: 点击此处跳转文末名片获取

基本流程思路:

一. 数据来源分析

  1. 明确需求

    • 明确采集网站以及数据

      数据: 商品信息

  2. 抓包分析 --> 通过浏览器自带工具: 开发者工具

    • 打开开发者工具: F12 / 右键点击检查选择network

    • 刷新网页: 让网页数据重新加载一遍

    • 搜索关键字: 搜索数据在哪里

      找到数据包: 50条商品数据信息

      整页数据内容: 120条 --> 分成三个数据包

      1. 前50条数据 --> 前50个商品ID

      2. 中50条数据 --> 中50个商品ID

      3. 后20条数据 --> 后20个商品ID

      已知: 数据分为三组 --> 对比三组数据包请求参数变化规律

      请求参数变化规律: 商品ID

      分析找一下 是否存在一个数据包, 包含所有商品ID

    如果想要获取商品信息 --> 先获取所有商品ID --> ID存在数据包

二. 代码实现步骤: 发送请求 -> 获取数据 -> 解析数据 -> 保存数据

第一次请求 --> 获取商品ID

  1. 发送请求, 模拟浏览器对于url地址发送请求

    请求链接: 商品ID数据

  2. 获取数据, 获取服务器返回响应数据

    开发者工具: response

  3. 解析数据, 提取我们想要的数据内容

    商品ID

第二次请求 --> 获取商品信息

  1. 发送请求, 模拟浏览器对于url地址发送请求

    请求链接: 商品信息数据包

  2. 获取数据, 获取服务器返回响应数据

    开发者工具: response

  3. 解析数据, 提取我们想要的数据内容

    商品信息

  4. 保存数据, 把信息保存本地文件 csv表格

  5. 多页数据采集

代码展示

获取数据
# 导入数据请求模块
import requests
# 导入格式化输出模块
from pprint import pprint
# 导入csv
import csv

# 模拟浏览器 -> 请求头 headers <字典>
headers = {
   
    # 防盗链 告诉服务器请求链接地址从哪里跳转过来
    'Referer': '*****/',
    # 用户代理, 表示浏览器基本身份信息
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)'
}
# 请求链接
# 源码、解答、教程、安装包等资料加V:qian97378免费领
url = 'https://m*****/vips-mobile/rest/shopping/pc/search/product/rank'
# 请求参数 <字典>
data = {
   
    # 回调函数
    # 'callback': 'getMerchandiseIds',
    'app_name': 'shop_pc',
    'app_version': '4.0',
    'warehouse': 'VIP_HZ',
    'fdc_area_id': '104103101',
    'client': 'pc',
    'mobile_platform': '1',
    'province_id': '104103',
    'api_key': '70f71280d5d547b2a7bb370a529aeea1',
    'user_id': '',
    'mars_cid': '1689245318776_e2b4a7b51f99b3dd6a4e6d356e364148',
    'wap_consumer': 'a',
    'standby_id': 'nature',
    'keyword': '泳衣',
    'lv3CatIds': '',
    'lv2CatIds': '',
    'lv1CatIds': '',
    'brandStoreSns': '',
    'props': '',
    'priceMin': '',
    
基于Python的电商产品评论数据采集分析可视化系统的设计与实现,可以分为以下几个步骤: 1. 数据采集:使用Python的爬虫技术,通过网络爬取电商平台上的产品评论数据。可以使用第三方库如Scrapy或BeautifulSoup来实现。 2. 数据预处理:对采集到的评论数据进行清洗和去重,去除无用信息如HTML标签、特殊字符等。还可以进行文本处理,如分词、去除停用词等,以便后续的分析。 3. 数据存储:将清洗后的数据存储到数据库中,如MySQL或MongoDB,以方便后续的分析和查询。 4. 数据分析:利用Python数据分析库如pandas或numpy,对采集到的评论数据进行统计分析。可以分析评论的情感倾向(例如情绪分析),评论的关键词及其频次,评论的特征等。 5. 数据可视化:利用Python数据可视化库如matplotlib或seaborn,对分析结果进行可视化展示。可以绘制柱状图、饼图、词云图等,以直观地展示评论数据分析结果。 6. 系统设计与实现:可以使用Python的Web框架如Django或Flask,设计和实现一个用户友好的系统界面。系统提供数据采集数据分析可视化展示的功能,用户可以输入要分析的产品名称、网址等,系统会自动采集数据并生成相应的分析报告和可视化图表。 总的来说,基于Python的电商产品评论数据采集分析可视化系统的设计与实现,需要使用Python的爬虫技术、数据处理技术、数据分析技术和数据可视化技术,结合数据库和Web框架来实现一个完整的系统。这个系统可以对电商产品评论数据进行采集、清洗、存储、分析可视化展示,为商家或用户提供有价值的数据分析和决策依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值