d2l基础LeNet实现与ch6各类基础函数讲解

众所周知第七章在复现各大神经网络的时候也会用到ch6定义的各种函数,为了方便理解其中的细节,在这里具体讲解一下!

目录

1.LeNet实现

1.1net搭建

1.2数据集改正

1.3存储到gpu上的验证集

2.ch6训练

2.2loss探索

2.3改编版显数函数

2.4训练命令行


1.LeNet实现

1.1net搭建

  这里使用Seq简单复现即可,没啥好说的。

  注意:在Sequential里面也是可以写进自己的类的,详细见5_1。

            nn.Flatten()是将张量拉成(bs,-1)维度的张量

            注意最后送到全连接的input是需要自己算的!另外激活函数为Sigmoid

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)

'''
Conv2d output shape: 	 torch.Size([1, 6, 28, 28])
Sigmoid output shape: 	 torch.Size([1, 6, 28, 28])
AvgPool2d output shape: 	 torch.Size([1, 6, 14, 14])
Conv2d output shape: 	 torch.Size([1, 16, 10, 10])
Sigmoid output shape: 	 torch.Size([1, 16, 10, 10])
AvgPool2d output shape: 	 torch.Size([1, 16, 5, 5])
Flatten output shape: 	 torch.Size([1, 400])
Linear output shape: 	 torch.Size([1, 120])
Sigmoid output shape: 	 torch.Size([1, 120])
Linear output shape: 	 torch.Size([1, 84])
Sigmoid output shape: 	 torch.Size([1, 84])
Linear output shape: 	 torch.Size([1, 10])
'''

  简单用一个28的向量(与FM单张图片hw相同)看一下结构,注意卷积尺寸计算公式:

o=[(i+2p-k)/s]+1这个公式对应正方形尺寸图片卷积尺寸

1.2数据集改正

  原始的num_works=4,这里笔者的电脑太拉,用4的话内存不够用,所以改成2(如果2还不行直接上0)

def load_data_fashion_mnist_nw2(batch_size, resize=None):
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=2),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=2))

  然后设置loader,注意这里要用上面该过nw的函数:

batch_size = 128
train_iter, test_iter = load_data_fashion_mnist_nw2(batch_size=batch_size)

1.3存储到gpu上的验证集

  重头戏之一,存储到gpu上的验证!相关gpu的设置见ch5_5。

  本质是使用gpu设置对evaluate_accuracy进行修改:

def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使⽤GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval() # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    '''正确预测的数量,总预测的数量'''
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                '''BERT微调所需的(之后将介绍)'''
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
        return metric[0] / metric[1]

  开始的device=None,如果开始没有指定device,则看net里面的参数中的device是啥,然后设置成net参数里面的device,也是保证统一。

  再将每个loader中的数据挪到device中,如果是个list那就每一个都挪,如果是tensor的话就挪一次。对应的y也要挪到gpu上,一般y都是tensor所以挪一次就好。

  这里计算的时候用到了之前讲过的accuracy,在此再看一下,最后返回的是y_hat与y预测类别正确的数量。

def accuracy(y_hat, y):  # @save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

  在这里补充一下,经过了.argmax后,维度降成1维,每个元素代表每个图片的预测种类,与y一样

2.ch6训练

  由于这个函数实在是太重要了,所以我直接把它设成标题1。

  先上原版代码:首先是比ch3多了gpu设置。

def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """⽤GPU训练模型(在第六章定义)"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                            (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
        f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
        f'on {str(device)}')

   初始化weight,如果使用了全连接层或者卷积层,则用xavier初始化权重。
   在此补充xavier作用:根据输入输出的大小,使得再用随机数的时候,各个随机数之间的方差是差不多的,保证模型开始的时候梯度炸掉或者变为0。

  再将初始化权重部署到每一个layer中(.apply())

  打印一下再那个地方训练,避免弄了半天还是再cpu上。再将整个net挪到gpu上。

  添加了一个计时操作,每次计时的是每个epoch的训练用时。

  并注意在训练时,要将loader里面的X,y挪到gpu上!

2.2loss探索

  在此补充一下我的探索,因为我发现MLP的时候是用的l.mean().backward,而在这没有了,细看了一下,根源在于loss = nn.CrossEntropyLoss()里面有没有定义reduction='none'。

  如上图,定义了reduction='none'后,表示loss计算不会降维,保存每一个bs中的损失,所以得到的l是(bs)的loss,所以后续计算反向梯度下降的时候要mean()求均值(保证是标量对向量求导),由于最后累加器累加每个iter的loss,所以将(bs)的loss使用.sum()进行加和。

  而这次没有采用reduction='none'时,默认的时reduction='mean',直接在loss的时候就进行了均值操作。

 如上图,loss计算后的l是一个标量,经过累加器后,均值*个数(bs)=l.sum(),由于权重是随机的,所以几乎等于上一个即可说明二者是相等同的!

  所以往后直接不设置reduction好了,这样反向传播还简单一点。

2.3改编版显数函数

  众所周之笔者感觉画图的东西太罗嗦,跟ch3一样整了一个每个epoch显示数值的版本出来:

def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """⽤GPU训练模型(在第六章定义)"""
    global train_l, train_acc, metric

    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)

    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    # animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
    #                         legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
              f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

2.4训练命令行

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
好的,我可以回答你的问题并提供相应的Python代码。 首先,我们需要导入所需的Python库和模块: ```python import tensorflow as tf from tensorflow.keras.datasets import cifar10 from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import SGD from tensorflow.keras.utils import to_categorical import numpy as np import matplotlib.pyplot as plt import d2l ``` 然后,我们需要加载CIFAR-10数据集,并将其归一化: ```python (train_images, train_labels), (test_images, test_labels) = cifar10.load_data() train_images = train_images.astype('float32') / 255 test_images = test_images.astype('float32') / 255 ``` 接下来,我们需要对标签进行独热编码: ```python num_classes = 10 train_labels = to_categorical(train_labels, num_classes) test_labels = to_categorical(test_labels, num_classes) ``` 然后,我们可以建立AlexNet模型: ```python model = Sequential([ Conv2D(filters=96, kernel_size=(11,11), strides=(4,4), activation='relu', input_shape=(32,32,3)), MaxPooling2D(pool_size=(3,3), strides=(2,2)), Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), activation='relu', padding="same"), MaxPooling2D(pool_size=(3,3), strides=(2,2)), Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"), Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"), Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"), MaxPooling2D(pool_size=(3,3), strides=(2,2)), Flatten(), Dense(units=4096, activation='relu'), Dropout(0.5), Dense(units=4096, activation='relu'), Dropout(0.5), Dense(units=num_classes, activation='softmax') ]) ``` 接下来,我们需要定义优化器、损失函数和评估指标: ```python lr, num_epochs, batch_size = 0.01, 10, 256 optimizer = SGD(learning_rate=lr) loss = 'categorical_crossentropy' metric = 'accuracy' model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) ``` 然后,我们可以使用d2l中的`d2l.train_ch6`函数来训练模型: ```python train_iter = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).batch(batch_size) test_iter = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(batch_size) history = model.fit(train_iter, epochs=num_epochs, validation_data=test_iter) ``` 最后,我们可以使用d2l中的`d2l.plot_history`函数来绘制训练和验证精度随时间的变化情况: ```python d2l.plot_history(history, ('accuracy', 'val_accuracy')) ``` 完整代码如下所示: ```python import tensorflow as tf from tensorflow.keras.datasets import cifar10 from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import SGD from tensorflow.keras.utils import to_categorical import numpy as np import matplotlib.pyplot as plt import d2l (train_images, train_labels), (test_images, test_labels) = cifar10.load_data() train_images = train_images.astype('float32') / 255 test_images = test_images.astype('float32') / 255 num_classes = 10 train_labels = to_categorical(train_labels, num_classes) test_labels = to_categorical(test_labels, num_classes) model = Sequential([ Conv2D(filters=96, kernel_size=(11,11), strides=(4,4), activation='relu', input_shape=(32,32,3)), MaxPooling2D(pool_size=(3,3), strides=(2,2)), Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), activation='relu', padding="same"), MaxPooling2D(pool_size=(3,3), strides=(2,2)), Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"), Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"), Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"), MaxPooling2D(pool_size=(3,3), strides=(2,2)), Flatten(), Dense(units=4096, activation='relu'), Dropout(0.5), Dense(units=4096, activation='relu'), Dropout(0.5), Dense(units=num_classes, activation='softmax') ]) lr, num_epochs, batch_size = 0.01, 10, 256 optimizer = SGD(learning_rate=lr) loss = 'categorical_crossentropy' metric = 'accuracy' model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) train_iter = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).batch(batch_size) test_iter = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(batch_size) history = model.fit(train_iter, epochs=num_epochs, validation_data=test_iter) d2l.plot_history(history, ('accuracy', 'val_accuracy')) ``` 希望能帮助到你!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值